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Abstract

Java is a general purpose object-oriented programming language that has been widely

adopted. Because of its high adoption rate and its lineage as a C-style language, its syntax

is familiar to many programmers. The downside is that Java is not natively concurrent.

Volumes have been written about concurrent programming in Java; however, concurrent

programming is difficult to reason about within an object-oriented paradigm and so is dif-

ficult to get right.

occam-π is a general purpose process-oriented programming language. Concurrency is

part of the theoretical underpinnings of the language. Concurrency is simple to reason

about within an occam-π application because there is never any shared state; also occam-π

is based on a process calculus, with algebraic laws for composing processes. It has well-

defined semantics regarding how processes interact. The downside is that the syntax is

foreign and even archaic to programmers who are used to the Java syntax.

This thesis presents a new language, ProcessJ, which is a general purpose, process-

oriented programming language meant to bridge the gap between Java and occam-π. Pro-

cessJ does this by combining the familiar syntax of Java with the process semantics of

occam-π. This allows for a familiar-looking language that is easy to reason about in con-

current programs.

This thesis describes the ProcessJ language, as well as the implementation of a compiler

that translates ProcessJ source code to Java with Java Communicating Sequential Processes

(JCSP), a library that provides CSP-style communication primitives.
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Chapter 1

Introduction

As multiprocessor and multi-core computers become prevalent, and as computers get cheaper

and easier to network, the total number of processors available to the average computer pro-

gram increases. This drive toward more and more processors, combined with a clock rate

that is no longer increasing, requires modern applications to use concurrent programming

to perform well on modern computers.

Concurrent programming is difficult. For instance, the ‘threads and locks’ approach to

concurrent programming results in numerous problems that cause bugs. Taking too few

locks, or too many locks, using the wrong locks, using locks in the wrong order, etc., lead

to bugs that are difficult to find. However, concurrent programming does not have to be

difficult.

For instance, Sir Tony Hoare created a process algebra known as Communicating Se-

quential Processes (CSP). Through this work, he defined a mathematical basis for concur-

rent programming that allows developers to reason about concurrent programs. It provides

clearly defined semantics for executing multiple processes in parallel as well as, their com-

munication and composition.

It is through a mathematical basis of concurrent programming that modern applications

will be able to make best use of a growing number of resources while maintaining a code

base that is understandable.

With this in mind, this paper describes a new general-purpose, process-oriented pro-

gramming language called ProcessJ. To start, Chapter 2 will discuss the background of
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concurrent programming through the use of threads and locks as well as message pass-

ing. Chapter 2 will then introduce the ProcessJ language and explain both the design

decisions and how it differs from its common ancestors. After the introductory material,

chapter 3 will explain the project, how it is organized, documented, and built to ensure

easy on-boarding for new developers. Next, chapter 4 will discuss the design and imple-

mentation of the compiler and finally chapter 5 will discuss the design patterns used in the

implementation.
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Chapter 2

Concurrent Programming

Concurrent programs execute in an environment that, “. . . provide(s) mappings from appar-

ent simultaneity to physical parallelism (via multiple CPU’s), or lack thereof, by allowing

independent activities to proceed in parallel when possible and desirable, and otherwise by

time-sharing” [Lea99]. In other words, concurrent programs are able to execute code at the

same time.

Concurrent Programming has become more important in the software development in-

dustry since the clock rate of processors has leveled off, and as the number of processors /

cores has increased. It has become increasingly important for software developers to take

advantage of this increased physical parallelism. However, there are issues that come with

concurrent programming, as listed in Clean Code by Martin [Mar08]:

• Concurrency incurs some overhead, both in performance as well as writing additional

code.

• Correct concurrency is complex, even for simple problems.

• Concurrency bugs aren’t usually repeatable, so they are often ignored as one-offs in-

stead of the true defects they are.

• Concurrency often requires a fundamental change in design strategy.

As you read about the existing approaches to concurrent programming, and the new

ProcessJ programming language, think of the above issues. Think about overhead, and
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how compilers have been able to reduce code overhead and increase efficiency since their

inception. Also think about complexity; read each example and compare them to each other

in how understandable and intuitive they are. Think of how each approach determines or

avoids bugs, and finally consider which approaches require the greatest mental stretch during

design of an application.

2.1 Approaches

To give some history on the design decisions in developing ProcessJ, consider two approaches

to concurrent programming: shared memory and message passing. Since each topic is

weighty in its own right, this will be a brief cursory introduction.

2.1.1 Threads and Locks

Goetz [GPB+06]: writes of threads, as follows:

Threads are an inescapable feature of the Java language, and they can simplify
the development of complex systems by turning complicated asynchronous code

into simpler straight-line code. In addition, threads are the easiest way to tap the
computing power of multiprocessor systems. And, as processor counts increase,

exploiting concurrency effectively will only become more important.

Java achieves concurrency by means of threads. According to Lea [Lea99], a thread is “a

call sequence that executes independently of others, while at the same time possibly sharing

underlying system resources such as files, as well as accessing other objects constructed

within the same program.” A Java program must explicitly define threads through the use

of the Thread class.

In each approach to concurrency, there is an example from the producer/consumer prob-

lem. The most basic producer/consumer problem has two threads of control: a producer

and a consumer. The producer publishes some value that the consumer then processes.

Figure 2.1 illustrates a Java implementation of a producer. The producer takes in a buffer

and publishes new values until the program closes.

Since the producer needs to run in its own thread of control, the Producer class imple-

ments Runnable. The Runnable interface allows Java threads to execute a command. It is

considered good practice to implement Runnable rather than extend the Thread class.
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public class Producer implements Runnable {

private Buf f e r out ;

public Producer ( Buf f e r out ) {
this . out = out ;

}

public void run ( ) {
int x = 0 ;
while ( true ) {

x++;
out . produce ( x ) ;

}
}

}

Figure 2.1: Java Producer.

Figure 2.2 illustrates a Java implementation of a consumer. The consumer takes a buffer

and processes the values it receives until the program closes. Once again, the Consumer

class implements Runnable because it needs to run in its own thread of control. Like the

producer, the consumer is simple.

Now that the producer and consumer are established, there needs to be a way to link

them together. The driver is responsible for instantiating the producer and consumer then

starting their respective threads. After each has started, the driver needs to wait until both

complete. If the driver does not wait for them to complete, the main thread of control

completes and the application closes.

Finally, the buffer, shown in Figure 2.4, provides communication between the producer

and consumer. The buffer is where all the shared memory synchronization happens. Nor-

mally, a SynchronousQueue can be used to provide synchronous communication between

two threads; however,for the purposes of demonstration the Java locking mechanism is used.

The buffer, shown in Figure 2.4, has two methods: produce and consume. The produce

method is synchronized on the buffer, which means that only one thread is allowed in to

the method for any given Buffer object. The value is set then calls notify which informs

all threads waiting on this buffer that something has changed. After notifying the other

threads, the buffer waits for the value to become null again. In other words, the produce
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public class Consumer implements Runnable {

private Buf f e r in ;

public Consumer ( Buf f e r in ) {
this . in = in ;

}

public void run ( ) {
while ( true ) {

int x = in . consume ( ) ;
System . out . p r i n t l n ( x ) ;

}
}

}

Figure 2.2: Java Consumer.

public class Driver implements Runnable {

public stat ic void main ( St r ing [ ] a rgs ) {
Driver d r i v e r = new Driver ( ) ;
d r i v e r . run ( ) ;

}

public void run ( ) {
Buf f e r comm = new Buf f e r ( ) ;
Producer producer = new Producer (comm) ;
Consumer consumer = new Consumer (comm) ;

Thread producerThread = new Thread ( producer , ” Producer ” ) ;
Thread consumerThread = new Thread ( consumer , ”Consumer” ) ;

consumerThread . s t a r t ( ) ;
producerThread . s t a r t ( ) ;

try {
producerThread . j o i n ( ) ;
consumerThread . j o i n ( ) ;

} catch ( Inter ruptedExcept ion e ) {
throw new RuntimeException ( e ) ;

}
}

}

Figure 2.3: Java Driver.
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method is always called from the producer thread which needs to wait for the consumer to

process the latest value before producing more.

To go into the waiting mode, the buffer calls wait. Waiting has the effect of putting

the thread into a state where it does not idle with control of the processor. Instead, it goes

into a waiting state until it is woken up by a call to notify.

When notifiy is called, the thread is removed from the waiting queue; however, that

does not mean that it is run immediately. Something could happen between the time the

thread is removed from the waiting queue and when it acquires control of the CPU that

causes the condition to become false. A conditional loop, otherwise known as a guarded

wait, always surrounds a call to wait so that the resuming thread knows the condition it

was waiting for has been met. It also may be possible for spurious wakeups to occur, where

the system removes a thread from the wait queue without an explicit call to notify.

In the consume method, the process is reversed from the produce method. The consumer

waits until there is a value to process; it processes the value, then waits until ready again.

Goetz [GPB+06] writes:

At this writing, multi-core processors are just now becoming inexpensive enough
for mid-range desktop systems. Not coincidentally, many development teams

are noticing more and more threading-related bug reports in their projects.
In a recent post on the NetBeans developer site, one of the core maintainers
observed that a single class had been patched over 14 times to fix threading-

related problems. Dion Almaer, former editor of TheServerSide, recently logged
(after a painful debugging session that ultimately revealed a threading bug) that

most Java programs are so rife with concurrency bugs that they work only “by
accident”.

It takes considerable thought to grok the shared memory model. It may be better to

consider a new model, as suggested by Goetz [GPB+06], “One of the challenges of developing

concurrent programs in Java is the mismatch between the concurrency features offered by

the platform and how developers need to think about concurrency in their programs.”

As if any further proof of the problems inherent in the threads and locks model of

concurrent programming were necessary, Simon Peyton Jones [AO07] writes: “Locks are

bad.”

• Taking too few locks - It is easy to forget to take a lock and thereby end up with two
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public class Buf f e r {
private volat i le I n t e g e r x ;

public synchronized void produce ( int value ) {
x = value ;
n o t i f y ( ) ;
try {

while ( null != x ) {
wait ( ) ;

}
} catch ( Inter ruptedExcept ion e ) {

throw new RuntimeException ( e ) ;
}

}

public synchronized int consume ( ) {
int r e s u l t ;
try {

while ( null == x ) {
wait ( ) ;

}
} catch ( Inter ruptedExcept ion e ) {

throw new RuntimeException ( e ) ;
}
r e s u l t = x ;
x = null ;
n o t i f y ( ) ;
return r e s u l t ;

}
}

Figure 2.4: Java Buffer.
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threads that modify the same variable simultaneously.

• Taking too many locks - It is easy to take too many locks and thereby inhibit concur-

rency (at best) or cause deadlock (at worst).

• Taking the wrong locks - In lock-based programming, the connection between a lock

and the data it protects often exists only in the mind of the programmer and is not

explicit in the program. As a result, it is all too easy to take or hold the wrong locks.

• Taking locks in the wrong order - In lock-based programming, one must be careful to

take locks in the “right” order. Avoiding the deadlock that can otherwise occur is

always tiresome and error-prone, and sometimes extremely difficult.

• Error recovery - Error recovery can be very hard because the programmer must guar-

antee that no error can leave the system in a state that is inconsistent, or in which

locks are held indefinitely.

• Lost wake-ups and erroneous retries - It is easy to forget to signal a condition variable

on which a thread is waiting, or to retest a condition after a wake-up.

To sum up the consensus regarding the threads and locks model: programming within

this model is difficult, locks are bad, and programs seem to only work by accident. In other

words, programmers need to change the way they think about concurrent programming. In

researching the literature, there was not a single quote that gave a whole hearted approval

of this method. Most articles and books took a serious and austere tone with the subject

as if it is not something that normal people are able to do and so, if you want to learn it,

you better pay attention.

The austerity is not without cause. Consider what happened to the Mars rovers,

Opportunity and Spirit, 56 million km away and having problems caused by race con-

ditions [MD06]. The two rovers cost roughly $820 million dollars combined. Luckily they

recovered, but imagine if the errors had been more serious. The software for these rovers

was developed by some of the most brilliant minds, and no one caught the bug before de-

ployment. As mentioned previously, what is required is a fundamental change in design

strategy [Mar08].
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2.1.2 Communicating Sequential Processes

In the foreword of Sir Anthony Hoare’s book, Communicating Sequential Processes [Hoa85],

Dijkstra writes:

To say or feel that the computing scientist’s main challenge is not to get confused

by the complexities of his own making is one thing; it is quite a different matter
to discover and show how a strict adherence to the tangible and quite explicit
elegance of a few mathematical laws can achieve this lofty goal.

Communicating Sequential Processes (CSP) is a formal approach to concurrency and

an associated set of design techniques [Lea99]. CSP specifies a language in which processes

are defined in terms of an alphabet of events and specifies how processes interact with each

other.

From the language specification, CSP declares laws that define how processes behave.

The CSP language is composed of events, processes, channels, and operators that define

behavior of processes.

An event is something that happens to an object at a particular atomic instant of time.

There are event classes, much like a Java class, that are a ‘type’ of event. In addition,

there are also event instances at which a certain event class happens at a certain time. For

instance, a car crash is an event class, and the car crash that happened yesterday was an

instance of that event class.

Consider a change machine. This change machine interacts with the following event

classes:

• dollarIn The insertion of a dollar into the machine.

• coinIn The insertion of a dollar coin into the machine.

• tokenOut The result of a token from the machine.

Processes respond to an alphabet of events, or the set of events to which it is defined

to respond. They define the behavior of a system. In CSP, processes are composable; they

combine and connect to each other to create process networks. Consider a broken change

machine, one that takes in a dollar and stops. Figure 2.5, read dollarIn then STOP, displays
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BROKENCHANGE = ( d o l l a r I n → STOP )

Figure 2.5: A Broken Change Machine.

THEIFCHANGE = ( d o l l a r I n → THEIFCHANGE )

THEIFCHANGE = ( d o l l a r I n → ( d o l l a r I n → THEIFCHANGE ) )

Figure 2.6: A Change Machine That Steals Money.

a CSP process that first engages in dollarIn then behaves as the process STOP. In other

words, the machine takes a dollar and then stops working.

Of course, a machine that takes one dollar and stops working is of little use to anyone.

Consider instead, a change machine built by an evil genius that will take dollars forever,

but will never output any change. Figure 2.6 displays a description of THEIFCHANGE, a

recursively defined process that engages in the dollarIn event, then continues to act as

THEIFCHANGE.

Although this machine is of great use to its evil creator, no one else would consider it

better than the broken machine. Figure 2.7 displays a process that can either take in a

dollar or a coin, then output a token. The example is read, “dollarIn then tokenOut then

CHANGE choice coinIn then tokenOut then CHANGE.” The choice operator allows a process

to decide how to act, depending on the first event with which the process engages.

Suppose we need to convert coins to tokens, or tokens to coins, but we only want to

create a single machine. With this machine, the first event it receives determines how it

will act. If at first it receives a token, it will take in tokens and output coins; likewise, if at

first it receives a coin, it will convert coins to tokens. Figure 2.8 displays how to compose a

process out of other processes. In this example, INIT determines how the process will work

after engaging with its first event.

In Figure 2.7, the process could take either a dollar or a coin and output a token.

Consider a real world change machine with a dollar input slot, and a coin input slot. The

CHANGE = ( d o l l a r I n → tokenOut → CHANGE | co in In → tokenOut → CHANGE
)

Figure 2.7: Example of Choice.
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INIT = ( co in In → CONVERTCOIN | tokenIn → CONVERTTOKEN )

CONVERTCOIN = ( tokenOut → co in In → CONVERTCOIN )

CONVERTTOKEN = ( coinOut → tokenIn → CONVERTTOKEN )

Figure 2.8: Example of Process Composition.

CUST = ( d o l l a r I n → tokenOut → STOP )

CHANGE = ( d o l l a r I n → tokenOut → CHANGE )

( CUST | | CHANGE ) = ( d o l l a r I n → tokenOut → STOP )

Figure 2.9: Process Composed of Two Concurrent Processes.

process will not do anything on its own; it needs another process with which to interact. In

other words, the change machine needs someone to put dollars and coins into its input. For

this scenario, consider a process that is composed of a customer process, CUST, that needs

change for a dollar and a change machine; the customer process and the change machine

run concurrently as in Figure 2.9.

Although the previous example does model the interaction between the CUSTj process

and the CHANGE process, it would be nice to have a higher level abstraction to understand

how the interaction is taking place. We have one process, CUST; another process, CHANGE;

and a message, dollarIn. But how does the CUST process communicate the message to

the CHANGE process? A human would put the dollar into a slot, the slot would read the

dollar, and inform the processor. CSP models this as a special class of event called a

communication.

A communication c.v has two parts: the channel c, and the message v. Channels are used

by processes to communicate between each other. Channels offer unbuffered-synchronous

communication. When a process reads from or writes to a channel, it blocks until the other

process is ready to send or receive the communication.

In our example, the mechanism that reads the dollar and informs the process would be

the channel. The CUST process would send the dollarIn on the writing end of the channel,

and the CHANGE process would read from the reading end of the channel. Figure 2.10
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( c ! d o l l a r I n → CUST | | c ? d o l l a r I n → CHANGE( d o l l a r I n ) )

Figure 2.10: Processes Communicating Over a Channel.

displays a CUST writing a dollarIn message with the write operator ‘!’, and the CHANGE

process reading the message from channel with the ‘?’ operator and finally handling that

message.

JCSP

Now that the concept of CSP has been explained, let us consider a way of programming

CSP in Java.

Communicating Sequential Processes for Java, JCSP [W+03], is a Java library that

allows Java programmers to use a CSP style within Java. To get a cursory understanding

of JCSP, I will implement the same producer consumer problem, but this time I will use

JCSP. Similar to the first Java example, there are three classes: Producer, Consumer, and

Driver. However, unlike the first Java example, there is no need for the Buffer because it

is replaced by the JCSP abstraction of a channel.

To understand JCSP, it is first necessary to understand two concepts: the process and

the channel. The process is where all the action happens, literally; moreover, processes

communicate over channels. A process implements the CSProcess interface. The CSProcess

interface is similar to the Runnable interface: both abstract a process that can be run in its

own thread of control. It is possible to run processes either sequentially or in parallel. In

order to communicate, processes use channels. There are several types of channels, but the

easiest to understand is a one-to-one channel. As the name suggests, there is one reading

end and one writing end. Each end is held by a single separate process. When the writer

writes to the channel, it blocks until the reading end receives the message. In other words,

the channel provides synchronous, unbuffered, blocking communication between one process

writing to the writing end of the channel, and one process reading from the reading end of

the same channel.

A one-to-one channel is like the ignition of a car. For example, the car is designated as

one process and the driver is another process. The ignition is the channel over which the

13



www.manaraa.com

import org . j c s p . lang . CSProcess ;
import org . j c s p . lang . ChannelOutputInt ;

public class Producer implements CSProcess {

private f ina l ChannelOutputInt out ;
public Producer ( ChannelOutputInt out ) {

this . out = out ;
}
public void run ( ) {

int x = 0 ;
while ( true ) {

x++;
out . wr i t e ( x ) ;

}
}

}

Figure 2.11: JCSP Producer.

driver and the car communicate. The car will sit still and not do anything until the driver

communicates with it by placing the key in the ignition. Turning the key in the ignition

is like writing to the channel, sending a message to the car to turn on. The car turns on

and does many things, but also continues to listen on the ignition channel for a message to

turn off. Because the driver has the key and is the one sending messages, the driver has the

writing end of the channel; since the car is the one awaiting messages, it has the reading

end.

It is important to distinguish between a channel and the channel ends. A channel

provides unidirectional communication from a writing end to a reading end. The channel

is a matched pair of read / write ends. In this text: “X writes to channel Y,” means X

writes to the writing end of channel Y where X is a process and Y is a channel. The same

goes for the reading end: “X reads from channel Y,” means X reads from the reading end

of channel Y.

Figure 2.11 shows the same producer consumer example as for the previous Java imple-

mentation. The producer takes a ChannelOutputInt, which is the writing end of a channel

that sends integers. Just as in the Java example, the producer increments an integer and

sends it off for the consumer to process.
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import org . j c s p . lang . CSProcess ;
import org . j c s p . lang . ChannelInputInt ;

public class Consumer implements CSProcess {

private f ina l ChannelInputInt in ;
public Consumer ( ChannelInputInt in ) {

this . in = in ;
}
public void run ( ) {

while ( true ) {
int x = in . read ( ) ;
System . out . p r i n t l n ( x ) ;

}
}

}

Figure 2.12: JCSP Consumer.

Next, the consumer in Figure 2.12 reads integers from ChannelInputInt. The

ChannelInputInt is the reading end of the same channel given to the producer. The

consumer reads an integer and then does some processing to it; in this case, it just prints

to the screen.

Finally, the driver does the wiring between the processes. The driver in this example

is slightly more complicated than necessary in order to show some features of JCSP. As

all Java programs, the driver begins with the main method. It creates a new Driver and

from there, starts a new Sequence process. The sequence process runs an array of processes

sequentially.

Once the driver is running, it declares a one to one channel, instantiates a producer

and consumer, and provides them the writing and reading end of the channel respectively.

Finally, the driver starts a Parallel process. The parallel process executes an array of

processes, each within their own thread, and does not return control until all its processes

have completed.

Though it is possible to program in a process-oriented style within Java using JCSP,

there are some drawbacks to this approach. It also is possible to program in other paradigms

or styles within Java. For instance, it is perfectly possible to write programs in a functional

style or a declarative style within Java. Writing a library or application within a particular

style requires self-constraint on the side of the programmer.
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import org . j c s p . lang . CSProcess ;
import org . j c s p . lang . Channel ;
import org . j c s p . lang . One2OneChannelInt ;
import org . j c s p . lang . P a r a l l e l ;
import org . j c s p . lang . Sequence ;

public class Driver implements CSProcess {

public stat ic void main ( St r ing [ ] a rgs ) {
Driver d r i v e r = new Driver ( ) ;
CSProcess [ ] p r o c e s s e s = new CSProcess [ ] { d r i v e r } ;
new Sequence ( p r o c e s s e s ) . run ( ) ;

}

public void run ( ) {
One2OneChannelInt comm = Channel . one2oneInt ( ) ;
Producer producer = new Producer (comm. out ( ) ) ;
Consumer consumer = new Consumer (comm. in ( ) ) ;
CSProcess [ ] p r o c e s s e s = new CSProcess [ ] { producer , consumer } ;
new P a r a l l e l ( p r o c e s s e s ) . run ( ) ;

}
}

Figure 2.13: JCSP Driver.

Self-constraint is another way of saying that something is not being checked by the

compiler. The Java compiler is built to check an object-oriented language; however, it

knows nothing of processes or channels. It does not know that you should not give the

same end of a one-to-one channel to two processes. The Java compiler also allows the use

of threads and locks, and sharing variables between processes.

Regarding shared variables, pun intended, JCSP does not use true message passing.

Instead, JCSP abstracts the message passing paradigm from terms of shared memory. When

a process writes an object to a channel, the exact same object is received on the reading

end. Now, both processes have a reference to that variable. It takes self-constraint by of the

programmer to set that reference on the writer side to null, or to refrain from modifying

that variable from both threads. This is an issue cause by using a language outside the

process-oriented paradigm.

16



www.manaraa.com

occam-π

To get pure process oriented style, with all the implied semantics, it is necessary to use

another language, occam-π [WB05]. occam-π is a process-oriented programming language

based on the principles of CSP. This paper does not go into the specifics of occam-π because

the language has many features that exceed the scope of this work, and ProcessJ was

partially based on the occam-π language.

Figure 2.14 shows the producer consumer in occam-π. Starting with the producer, a

process is declared with the PROC keyword followed by a name and a list of parameters.

The producer takes the writing end of a channel, indicated by the ‘!’ character, that writes

integers. Next, a new integer x is declared with the scope only ranging through the following

sequential block, indicated by the SEQ keyword.

Within the sequential block, the variable x is set to 0 using the assignment operator

‘:=’. Next is an infinite loop where x is incremented then written to the out channel using

the ‘!’ operator. If you are not familiar with the syntax of occam-π, just compare to the

other producer consumer examples and it is possible to understand what it is doing.

After that, the consumer defines two channels as input. The in parameter is the reading

end of a channel, indicated by the ‘?’ character. The other channel parameter is used to

write values to the console, just as with Java’s System.out.print. The rest is similar to the

producer. A note regarding on the reading operation: a read is indicated by ‘<channel read

end> ? <variable>’ which reads a value from that channel and assigns it to the variable.

Finally, the driver is the main application. The driver is given the writing end of a

channel, which will write to standard out from the system. The driver declares a channel

and gives the appropriate ends to the producer and consumer; the producer and consumer

are run in parallel. Unlike the Java example, there is no need to explicitly wait for the

producer and consumer to finish; the parallel block is not completed until all of the contained

processes are complete.

So far this paper has taken into consideration threads and locks, and also has described

a message passing system within the context of Java. This paper has also explored CSP

and an implementation of a process-oriented language called occam-π. Now, let us look at

the new ProcessJ language.
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#USE ” course . l i b ”

PROC Producer (CHAN INT out ! )
INT x :
SEQ

x := 0
WHILE ( TRUE )

SEQ
x := x + 1
out ! x

:

PROC Consumer (CHAN INT in? , CHANBYTE s c r e en ! )
INT x :
WHILE ( TRUE )

SEQ
in ? x
out . i n t (x , 0 , s c r e en ! )

:

PROC Driver (CHANBYTE out ! )
CHAN INT comm:
PAR

Producer (comm! )
Consumer (comm? , out ! )

:

Figure 2.14: occam-π Producer-Consumer Driver.
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2.2 ProcessJ

Sir Anthony Hoare writes of programming languages [BW09]:

Programming language design is a fascinating topic. There are so many pro-

grammers who think they can design a programming language better than one
they are currently using; and there are so many researchers who believe they

can design a programming language better than any that are in current use.
Their beliefs are often justified, but few of their designs ever leave the designer’s
bottom drawer...

Programming language design is a serious business. Small errors in a language
design can be conducive to large errors in an actual program written in the

language, and even small errors in programs can have large and extremely costly
consequences.

With the ProcessJ programming language, I intend to take Sir Anthony Hoare’s words

to heart. In doing so, I have researched programming languages in general, and process

oriented programming specifically and asked myself why write a compiler for another lan-

guage. ProcessJ is built upon a solid mathematical foundation. With that foundation I

feel confident ProcessJ programmers have a reason to believe in the correctness of their

applications. Communicating Sequential Processes has clearly defined separation of control

flow, and the communication between processes is well defined. The scaffolding of ProcessJ

is composed of two other highly successful languages within their own domain: Java and

occam-π. Java is the most popular programming language in the world so it is safe to

say that people are familiar with it. On the other hand, occam-π has a strong model for

concurrent development. Together, they combine to create a language that looks familiar

to a large number of programmers that has a strong model for concurrent development.

When James Gosling was asked, “How do you design a system programming language,”

he replied [BW09]:

I tend to not think about languages and features much. In the times when I’ve

done language design, which is tragically too often, it’s always motivated by a

problem. What is the context in which it is going to be run? What are people
going to do with it? Kind of what is different about the universe?

Inherent concurrency is the problem ProcessJ is trying to solve. It is almost impossible

to program in ProcessJ without concurrency. The idea is to abstract all the process handling

to the run-time so it can be done more efficiently. It could, for instance, be abstracted to run
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record Point {
int x ;
int y ;

}

Figure 2.15: ProcessJ Record.

either on a single computer with a single processor or on a distributed system. Potentially,

processes could abstract away the single computer model.

With the design of the language in mind, lets look at some of the features ProcessJ

offers.

2.2.1 Modules

Each package in ProcessJ contains one or more modules. A module is a ProcessJ file that

contains top-level elements.

2.2.2 Top-Level Elements

ProcessJ has four top-level elements: variable declarations, records, protocols, and pro-

cesses.

Top-level variable declarations in ProcessJ have module visibility. An element with

module visibility can only be seen within the current file. Visibility is an important de-

sign feature of the top-level variable declarations because of the constant values between

processes.

Records are similar to structs in C. They are the data part of an object in Java. Records

are holders of related values. Figure 2.15 is an example of a record that represents a two

dimensional point.

Protocols are similar to unions in C; they are used to define the types of messages

allowed over a channel. Each protocol can have one or more named cases. Unlike unions,

however, protocols only specify content and not necessarily the order they need to appear

in memory.

Finally, processes define the behavior of the program. Figure 2.18 displays several

20



www.manaraa.com

protocol Cl i en tPro toco l {
Request : {

int s t a t u s ;
}
Result : {

int s t a t u s ;
int r e s u l t ;

}

}

Figure 2.16: ProcessJ Protocol.

examples of processes. The components of a process definition are the modifiers, keyword

‘proc’ a return type, name, parameter list, and body.

2.2.3 Built-In Types

ProcessJ has few built-in types. These are as follows.

• Primitives, which include boolean, byte, char, double, float, int, long, and short just

as in Java.

• Array, which are the same as their Java counterparts.

• Channels, which are the communication medium between processes.

• Channel ends, the two ends being:

– read, the reading end of a channel is used to read values from that channel, and

– write, the writing end of a channel is used to write values to that channel.

• Barriers, which are used as synchronization points between a number of processes.

• Timers, which are used to post an event after a pre-determined amount of time.

2.2.4 Statements

Most statements in ProcessJ look exactly like their Java counterparts, which are well covered

in the literature. Statements specific to ProcessJ are as follows.
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alt {
p r i c e = s lowPartSupp l i e r . read ( ) : {

// handle the order from the s lowPartSupp l i e r
}
p r i c e = f a s t P a r t S u p p l i e r . read ( ) : {

// handle the order from the f a s t P a r t S u p p l i e r
}

}

Figure 2.17: ProcessJ alt Block.

• Alternations are a collection of cases that executes the ‘ready’ process. Consider an

example process, shown in Figure 2.17, where an inventory manager contacts two

order supplies. The two suppliers are represented by the reading end of channels. The

algorithm always goes with the first supplier to respond. Similarly, whichever channel

end is ready first is executed. The part of the alt case before the colon is the guard,

comprised of an optional boolean precondition and either a channel read, a channel

write, a timer, or a barrier.

• Blocks are normal sequential blocks in ProcessJ, and look the same as their Java

counter parts. They start with an ‘{’ character and end with a ‘}’ character. However,

ProcessJ has parallel blocks that execute each statement in its own thread of control.

A parallel block is a normal block with the par before the opening ‘{’ character.

• Channel write statements write data to a synchronous, unbuffered, blocking channel.

• A claim statement is syntactic sugar. In the case of a shared channel, this is expressed

as “I’m claiming this channel to write on.”

• An enroll statement enrolls a process on a barrier.

• A resume statement tells the program, where to resume after a suspend.

• Skip is a process that is always ready, but does nothing.

• Stop is another process that is always ready to halt.

• A suspend statement returns control to the initiating process until the process is

resumed.
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public proc void Producer (chan<int>. wr i t e out ) {
int x = 0 ;
while ( t rue ) {

x++;
out . wr i t e ( x ) ;

}
}

public proc void Consumer (chan<int>. read in ) {
while ( t rue ) {

int x = in . read ( ) ;
// do s t u f f with x

}
}

public proc void Driver ( ) {
chan<int> comm;
par {

Producer (comm. wr i t e ) ;
Consumer (comm. read ) ;

}
}

Figure 2.18: ProcessJ Producer Consumer Driver.

• A sync statement synchronizes on a barrier. Every process enrolled on a barrier will

wait at these statements until all processes enrolled on that barrier have reached the

synchronization point.

• A timeout statement represent a timer process plus a duration.

2.2.5 Producer Consumer

In the ProcessJ producer consumer example, there are three processes: the producer, the

consumer, and the driver. Just as in previous examples, the producer takes in the writing

end of a channel that carries integers. In the body, it loops forever; it increments the x

value and writes it to the channel. The consumer, once again, loops forever while reading

values for the reading end of a channel. The driver declares a channel, and executes the

producer and consumer in parallel.

In Sir Anthony Hoare’s acceptance speech for the Turing Award [Hoa81], he said,

There are two ways of constructing a software design. One way is to make it so
simple that there are obviously no deficiencies. And the other way is to make it
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so complicated that there are no obvious deficiencies.

Comparing the ProcessJ code to Java code, it is painfully obvious which is so simple

that there are obviously no deficiencies and which is so complicated that there are no

obvious deficiencies. ProcessJ is simple and elegant with built-in parallelism. ProcessJ

has mathematically based semantics to ensure correctness. It took minutes to write this

code, which is obviously correct. Each process has just a few lines of code that are easily

comprehensible.

However, the Java example took much longer to write. There are many lines of code

that have nothing to do with the primary responsibilities of the system, namely the Buffer

and the parts of the driver that deals with threads. It is complicated, and can be written

incorrectly several times before the final implementation; the system is not intuitive.

The example in JCSP is a step in the right direction. The code is much easier to

understand. The only problem is that it relies on the self-constraint of the programmer. It

requires you to not go outside the model for parallelism because it is not checked by the

compiler. However, ProcessJ can make additional semantic checks specific to the process-

oriented programming model.

Finally, occam-π is strikingly similar by design. The only criticism to make of occam-

π, and a major reason for the development of ProcessJ, is that a large number of people

do not like the syntax of this language. Programmers used to the C-family programming

languages, such as Java, are not used to mandatory indentation. They do not like prefixing

‘SEQ’ to what could be implied as sequential code. These are some of the little things that

the use of ProcessJ’s Java-like syntax hopes to remedy.
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Chapter 3

Project

Before getting into the design and implementation of the compiler, details of the ProcessJ

compiler project will be explained in this chapter. A project has to do with more than code.

If it were just code, it would be simple. For instance, all code could be thrown into one

file that was five thousand lines long, there would be one command to build the project,

and one command to run the resulting artifact all of which lies in the mind of the creator.

However, there is a human component to any project, which means that project needs build

processes, structure, and a means for collaboration.

To make the build process, structure and collaboration as simple as possible, this project

focused on simplicity and standards so that future developers could focus on coding rather

than on the build process. To simplify each of these project components, a combination of

Apache Maven, git and github.com was chosen.

Git and github.com were the tools that people on this project used to collaborate with

each other on tasks like issue tracking, code review, and source control. The distributed

nature of git allowed the team members to work on and manage their own repositories;

they only merged when the time was right. Distributed source control systems, such as git,

encourage developers to commit more often, because it is only their own repositories that

are affected; if someone needs a change that another developer had made, that person can

merge the change.

Apache Maven is a software project management and comprehension tool that has the

primary goal of allowing a developer to comprehend the complete state of a development
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effort in the shortest period of time [Apa03]. Maven was chosen for this project because of

its simple build process, common project structure, quality project information, and also

because this tool gives general ‘best practice’ guidelines. The rest of this chapter will detail

how Maven was used in this project and the effect it had on the project.

3.1 Build Process

A uniform and familiar build process was the goal when developing this project. It was

known that there would be source code generation for syntax analysis, and that the com-

piler’s purpose was to generate source files. Code generation needs to happen before the

main application can compile. The main application needs to compile before tests can com-

pile, and the tests need to compile before the tests are run. However, the tests do not need

to compile in order to run the application.

When looking for a clean way of implementing the build process for the application, the

Apache Maven project was evaluated. Maven includes the concept of a life cycle. There

are three default life cycles, and each life cycle has a standard set of phases. It was a clean,

consistent, and well defined process that is already well-documented.

Maven allows plugins to attach goals to life cycle phases. As the life cycle executes, it

iterates through the phases and executes all goals bound to the current phase. Think of a

life cycle as a pipeline, and the phases as stages in that pipeline. The goals are similar to

actions that execute at a certain stage of the pipeline.

There are three life cycles that are available with the distribution of Apache Maven:

clean, default, and site. It is possible to define alternative life cycles, but there was no need

to do so for the ProcessJ compiler project.

3.1.1 Clean Life Cycle

The clean life cycle is used to remove all generated files from previous builds. When the

clean life cycle is invoked, the following three phases are executed in order: pre-clean, clean,

and post-clean. The pre-clean and post-clean phases have no default bindings. However, the

clean phase is bound to the clean:clean goal by default. During the clean:clean goal, the
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Maven Clean Plugin deletes the project’s working directory of generated files. By default,

it discovers and deletes the directories configured in the Project Object Model (POM),

described in Section 3.2.1; this can be useful if generated sources get out of sync with

source code. The following list displays settings in the POM that allow Maven to know

what to clean by default.

project.build.directory The target directory is the base build directory,

which contains all generated sources to provide

a clean separation from managed source.

project.build.outputDirectory All generated class files are placed in the

target/classes directory.

project.build.testOutputDirectory All generated class files from test classes are

placed in the target/test-classes directory.

project.reporting.outputDirectory Generated site files are placed in target/site.

3.1.2 Site Life Cycle

An important feature of Maven is its ability to generate a web site from the project. The

site is generated during the site lifecycle. There are four phases of the site lifecycle: pre-

site, site, post-site, and site-deploy. Similar to the clean lifecycle, the site life cycle hast two

phases without default bindings: the pre-site phase and the post-site phase. The site phase

has the site:site goal, which executes each of the reporting plugins then generates the site

from the results; the site-deploy has the site:deploy, which deploys the generated site to the

ProcessJ web site server using scp.

3.1.3 Default Life Cycle

Finally, the most important life cycle is the default life cycle. The default life cycle handles

the project deployment, which involves everything from generating sources to packaging the

final product as a ‘jar’ file. Below is a list of the phases involved in the default life cycle

and a description from the Apache Maven site [Apa03].
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validate Validates that the project is correct and all necessary infor-

mation is available.

initialize Initializes build state, e.g., sets properties or creates direc-

tories.

generate-sources Generates any source code for inclusion in compilation.

process-sources Processes the source code, for example, to filter any values.

generate-resources Generates resources for inclusion in the package.

process-resources Copies and processes the resources into the destination di-

rectory, ready for packaging.

compile Compiles the source code of the project.

process-classes Post-processes the generated files from compilation, for ex-

ample, to do bytecode enhancement on Java classes.

generate-test-sources Generates any test source code for inclusion in compilation.

process-test-sources Processes the test source code, for example, to filter any

values.

generate-test-resources Creates resources for testing.

process-test-resources Copies and processes the resources into the test destination

directory.

test-compile Compiles the test source code into the test destination di-

rectory

process-test-classes Post-processes the generated files from test compilation, for

example, to do bytecode enhancement on Java classes. For

use with Maven 2.0.5 and above.

test Run tests using a suitable unit testing framework. These

tests should not require the code be packaged or deployed.

prepare-package Performs any operations necessary to prepare a package be-

fore the actual packaging. This often results in an unpacked,

processed version of the package. (Maven 2.1 and above).

package Packages the compiled code in a distributable format, such

as a JAR.
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pre-integration-test Performs actions required before integration tests are ex-

ecuted. This may involve such actions as setting up the

required environment.

integration-test Processes and deploys the package if necessary into an envi-

ronment in which integration tests can be run.

post-integration-test Performs actions required after integration tests have been

executed. This may include cleaning up the environment.

verify Runs any checks to verify the package is valid and meets

quality criteria.

install Installs the package into the local repository, for use as a

dependency in other projects locally.

deploy This is done in an integration or release environment, and

copies the final package to the remote repository for sharing

with other developers and projects.

3.2 Structure

There are three top-level elements to the ProcessJ project: the Project Object Model

(POM), the source, and target directories. The POM is Maven’s method of describing the

meta-data of a project and adding functionality into the build process. The source directory

is where all project documents are kept including the ProcessJ compiler, the unit tests, run-

time resources as well as documentation for the project site. Finally, the target directory

is a place to keep all generated source files.

One benefit to using Maven is its aspect of convention over configuration. All aspects

of a project are configurable: source files go where the creator desires; unit tests can be

kept in the same folder as run-time code; and libraries are expected to be somewhere on

a class-path environment variable. There is no limit to how complex the project can be.

Fortunately, that amount of flexibility is not necessary. Once a developer has worked on a

Maven project, that developer is instantly familiar with the structure of any other Maven

project.

This section describes the three aspects common across Maven projects: the POM, the
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source, and target directories.

3.2.1 Project Object Model

The POM is the central concept of Maven. Maven the Definitive Guide [Son08] states, “The

POM is where a project’s identity and structure are declared, builds are configured, and

projects are related to one another.” There are four types of information about the project:

POM relationships, general project information, build settings, and the build environment.

POM relationships describe how the project relates to other projects. Every Maven

project has coordinates and an optional set of dependencies. Coordinates are a unique set

of information that identifies a Maven project. The three essential coordinates are groupId,

artifactId, and version.

The groupId of the ProcessJ compiler is edu.unlv.cs; the name follows a convention

followed in Java where the top level package is the reverse domain name of the organization

that developed the project. Using the groupId allows grouping all artifacts of an orga-

nization, because it determines the location of the artifact in the Maven repository. The

groupId is split on ‘.’ to determine the directory structure. Since the value of the groupId

is edu.unlv.cs, the directory structure inside the Maven repository becomes edu/unlv/cs.

Next, the artifactId for the ProcessJ compiler is processj-compiler, and the

version is 1.0.0-SHAPSHOT. Maven uses the coordinates to determine the name and

location of the artifact for each project. After executing the install phase, the artifact,

which is processj-compiler-1.0.0-SNAPSHOT.jar, is located in the repository directory

edu/unlv/cs. The Maven naming convention is convenient because as the version number

changes, it is possible to retain multiple version of the same artifact.

If the coordinates allow other projects to access the current project, then the depen-

dencies section allows the project to define what projects it needs access. The ProcessJ

compiler utilizes several open-source projects as dependencies, as listed below.
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ANTLR The ANTLR, Another Tool for Language Recognition (ANTLR)

project is used to generate the parser and lexer from a grammar

file.

Commons CLI The Apache Commons CLI, command line interface, project pro-

vides an API for parsing command line arguments and print a help

message at the command line.

Commons IO The Apache Commons IO project is used to output the generated

classes into files.

JUnit A unit testing framework. This is strictly a test dependency, and

is not necessary for the completed ProcessJ compiler to execute.

StringTemplate The StringTemplate project is used to generate the output from a

template format.

The general project information defined in the POM indicates such information as the

project’s name, the organization, the web site URL, a list of contributors, and the license

under which the project is distributed. Specifying general information in the POM allows

Maven to include this information in the generated site and to know where to deploy

the generated site. For instance, the site http://processj.cs.unlv.edu contains the

generated site for the ProcessJ compiler. The general information is not strictly necessary

for the build process, although it is useful for generating the site.

Maven provides access to plugins by defining the plugins used in the POM in the build

settings. It is possible to customize the build and site generation processes by adding

plugins and attaching them to life-cycle phases. Below is a list of plugins and extensions

the ProcessJ compiler utilizes with descriptions from the Apache Maven site.
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antlr3 Generates the parser and lexer from an ANTL grammar file.

assembly Builds an assembly (distribution) of sources and/or binaries.

changelog Generates a list of recent changes from the SCM.

checkstyle Generates a report regarding the ode style used by the developers.

clean Cleans up after the build.

compiler Compiles Java sources.

eclipse Generates an Eclipse project file for the current project.

findbugs Performs static analysis of the generated class files and generates a

report based on the results.

install Installs the built artifact into the local repository.

jar Builds a JAR from the current project.

javadoc Generates Javadoc for the project.

jxr Generates a source cross reference.

pmd Similar to findbugs, it is a static analysis tool.

resources Copies the resources to the output directory for inclusion in the JAR.

site Generates a site for the current project.

ssh Copies site files to the deployment URL.

surefire Runs the JUnit unit tests in an isolated class-loader, and creates a

report based on the results.

Finally, the last collection of settings in the POM are the build environment settings,

which consist of profiles.

3.2.2 Source

The src directory is where the source files for the project are located. Under the src

directory, there are three directories: main, site, and test. Each directory clearly separates

the concerns of its contents. The main directory stores the source code and resources that

will eventually produce the executable ProcessJ compiler. The site directory contains

information necessary to generate the ProcessJ web site, and the test directory contains

code and resources for testing.
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Main Directory

The name of the main directory should be a good indicator of the intended purpose. It is

the main directory of the whole project because it contains the source files for the ProcessJ

compiler. Because ‘source’ does not necessarily mean ‘.java’ file, inside the main directory

are the three source code directories: antlr3, java, and resources.

Within the antlr3 directory is the ANTLR grammar file for ProcessJ, named

ProcessJ.g. The location and name of the file are significant because it is used to de-

termine the name and package of the generated lexer and parser.

The java directory contains the actual source code of the ProcessJ compiler. Within

the java directory is the base Java package of the project edu/unlv/cs/processj. The

contents of this directory will be described in Chapter 4.

Finally, the resources directory contains the resources used during the run time. Specif-

ically, two files that reside in this directory are log4j.xml and templates/java.stg.

The log4j.xml is a configuration file that tells the system where to output log messages

and how they should be formatted. Instead of using System.out.println, log4j allows the

programmer to configure which log messages are displayed. For instance, there is a normal

mode, and a verbose, or debug, mode. During the debug mode, which is a command

line option, many more messages are displayed than in the normal execution mode. This

will allow compiler developers to isolate problems with the compiler, and to see much

more information than would be strictly necessary what is only needed is to compile some

ProcessJ source files. Utilizing a configuration file for logging allows the developer to keep

the code clear of commented out debug statements.

Another resource file that helps clean up the code, is the templates/java.stg file. The

templates directory was originally meant to contain the string template group files for

each of the supported target languages. Since Java is the only currently supported target

language, the java.stg file is the only template file. However, as more target languages

or platforms are added, the templates directory will be a single place where all the string

template group files can be kept.
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Site Directory

The site directory contains the files necessary to generate the content for the ProcessJ

compiler website. There are two components of the site directory: the site.xml file and

the apt directory.

In order to generate a site, Maven needs to know what to generate. The site.xml file,

called the site descriptor, describes the navigation structure of the generated site. The site

descriptor is used to split the navigation into information that is useful to intended users.

There are three sections to the site descriptor: the overview, developers, and reports.

The overview section is intended to give general information about the compiler to Pro-

cessJ developers. The overview section contains information about the ProcessJ language,

the compiler, and more advanced options of the compiler.

Next, the developers section contains information pertinent to developers working

on, or interested in working on, the ProcessJ compiler. Much of the developers section

contains the design and implementation details outlined in this thesis. The developers

section is a starting point when searching for documentation on the ProcessJ compiler.

Finally, the last section of the site descriptor is the reports section, which contains

reports that Maven generates about the project. The reports contained in this section

allows current developers to maintain quality control of the project.

Once Maven knows the structure of the generated site, it also needs to generate the

content. The format used to generate the content is Almost Plain Text (APT) [Apa07a],

and the files are in the apt directory. APT is a wiki-like format used to generate the content

of the web site. Using the ProcessJ website as an example, the content for the site ranges

from how the compiler is used to developer documentation.

The final directory inside the source is the test directory. Tests are necessary to any

good software project. In the ProcessJ compiler, the tests are kept in the src/test direc-

tory. Keeping test files separate from production code is a good practice because it clearly

defines what is necessary code to run the application, and what is only there to verify that

the code works as expected.

As of this writing there are 146 tests for the ProcessJ project. The great thing about tests

are that they give confidence when making changes. After making a change, running the
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mvn test command executes all the unit tests. As the number of tests increase, developers

can become more confident they are not breaking anything.

There are two test rigs: one for syntax analysis, BaseProcessJGUnitTest, and an asser-

tion action for semantic analysis. The BaseProcessJGUnitTest ensures that the grammar

correctly validates source programs. The test utilities provided by this class are based on

the gUnit project [JYSP07]. It provides input text, the grammar rule to test, and a simple

pass or fail. In this way, several issues with the grammar were found and resolved early in

the development cycle.

Semantic analysis is performed by executing actions against the abstract syntax tree.

To isolate an action performed against the abstract syntax tree, a mechanism similar to that

used in testing the syntax analysis phase. Since the test input is controlled, no errors are

expected from the syntax. From the source, an abstract syntax tree is built and a number

of actions are run against the abstract syntax tree.

For this compiler, an AssertionAction was created that takes a collection of Assertions.

The Assertion is used to run a normal JUnit assert statements against specified element

classes. For instance, if the action to test alters NameExpr elements, it is possible for the

Assertion to hook into the pre and post methods of the tree walk, and verify that the

action performs as expected. The AssertionAction provides a convenient means to access

only the elements of an abstract syntax tree that need verification. In other words, there is

no need to manually traverse the abstract syntax tree after performing the action in order

to verify that the action did what it was supposed to do.

The source directory contains three sub-directories: main, site, and test. The main

directory contains all source files used directly in the ProcessJ compiler. The site directory

stores all files used to generate the project site. Finally, the test directory contains source

files and resources to verify the compiler works as expected.

Target

The final top-level element of the project is the target directory. Generated files are put

into the target directory. That includes the site, the generated source for the lexer and

parser, and all class files as well as JUnit and static analysis reports.
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There is no need to discuss the contents of this folder further. However, it is important

to note that files in the target directory are not meant for source control. The entire

directory is deleted when the clean life cycle phase is run.
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Chapter 4

Design & Implementation

Like many compilers, the ProcessJ compiler can be thought of as a pipeline. This chap-

ter will cover the parts of the ProcessJ compiler pipeline, beginning with the Command

Line Processor, then Syntax Analysis, Semantic Analysis, and finally Code Generation.

Figure 4.1 shows the control flow of the ProcessJ compiler.

In this chapter, reference will be made to many classes. For the sake of brevity, the

‘∼’ symbol will be used when referring to the base package edu.unlv.cs.processj. For

instance, edu.unlv.cs.processj.Main will be referred to as ∼.Main.

4.1 Command Line Processor

The ProcessJ compiler pipeline begins at the command line. The Command Line Processor

(CLP) portion of the compiler is implemented in the ∼.Main class. As with the beginning

of the pipeline, the ∼.Main class has three main responsibilities: to parse the command line

options, to determine the source files, and to hand control off to the syntactic analyzer.

4.1.1 Available Command Line Options

For convenience, there is a script file called pjc that takes the arguments specified and

hands them to the correct Java command line invocation for ∼.Main. Figure 4.2 displays

the result of running pjc with no command line arguments or with the --help option.

The arguments are meant to be self explanatory, but there are four options worthy of note:

37



www.manaraa.com

Command 
Line 

Processor

Lexer Parser

Syntax Analysis

Translate Write to File

Code Generation

Resolve 
Symbols

Set Scope

Initialize 
Variables

Identify 
Global 

Variables

Set Default 
Guard 

Preconditions

Preprocess

Semantic Analysis

Move Locals 
to Members

TransformAnalyze

Main

ProcessJCommonTreeFactory

StringTemplateOutputAction

FileSavingAction

SetGlobalVariableAction

VariableDeclarationSetCommonAttributesAction

SetDefaultGuardPrecondition

SetScopeAction

DefineAction

LocalVariableToMemberAction

Figure 4.1: ProcessJ Pipeline.
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usage: pjc [-d <arg>] [-ea] [-h] [-j | -m] [-nowarn] [-pjpath <arg>]

[-sourcepath <arg>] [-v]

-d <arg> Set the output directory.

-ea,--enableassertions enable assertions

-h,--help show the help message

-j,--java compile to java

-m,--mpi compile to c and use mpi

-nowarn Disable warning messages.

-pjpath <arg> Set the user pj library path, overriding the

user pj library path in the PJPATH environment

variable. If neither PJPATH or -pjpath is

specified, the user class path consists of the

current directory

-sourcepath <arg> Specify the source code path to search for

definitions. As with the user pjpath, source

path entries are separated by semicolons (;) and

can be directories. If packages are used, the

local path name within the directory must

reflect the package name.

-v,--verbose set log level to debug.

Figure 4.2: ProcessJ Compiler Command Line Help Message.

output directory, the target language, source path, and verbose.

To clear the base working directory of generated source files, the output directory is

used to place the files in a generated source folder inside the target directory. Putting the

output files in this source folder guarantees two things: they will be cleaned up when the

clean life cycle is executed, and they are not accidentally put into source control.

Although both MPI and Java are listed as options for targets, only Java is currently

implemented in order to show how to setup a second target language.

Finally, the verbose option greatly facilitates debugging the compiler. Adding the ver-

bose option at the command line will output the abstract syntax tree, and scopes as they

are processed. It is cleaner to print to the debug log than to have print line statements all

over the code.
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f ina l Options opt ions = new Options ( ) ;
f ina l OptionGroup targetLanguages = new OptionGroup ( ) ;
targetLanguages . addOption (new Option ( ”m” , ”mpi” , false ,

” compi le to c and use mpi” ) ) ;
targetLanguages . addOption (new Option ( ” j ” , ” java ” , false ,

” compi le to java ” ) ) ;
opt i ons . addOptionGroup ( targetLanguages ) ;

Figure 4.3: Sample of Command Line Option Declaration Stage.

4.1.2 Command Line Option Parsing

The ProcessJ compiler delegates all command line processing to the Apache Commons Com-

mand Line Interface (CLI) [Apa07b]. There are three stages to command line processing

with Apache Commons CLI: definition, parsing, and interrogation.

All the available command line options in the ProcessJ compiler are declared in the

definition stage. The command line options are declared in the getCommandLineOptions

method of the ∼.Main class. Figure 4.3 is a sample of how options are declared for the CLP.

In the sample, the target language option group is declared. An option group is a set of

mutually exclusive options. For instance, there can only be one target language; therefore,

the user can either choose mpi or java.

Apache Commons CLI parses the command line options in several formats. The format

chosen for the ProcessJ compiler was the BasicParser, simply because the format seemed

cleaner. Command line parsers are interchangeable, so the change is simple if a programmer

later decides to use a different format. The command line parser takes the arguments

provided to the main method and figures out which options were used.

The last stage in command line processing is interrogation. In the interrogation stage,

the parsed command line options are queried to find which options were used and get any

associated values. For instance, to find which target language was selected, the CommandLine

is queried with the hasOption method for either ‘mpi’ or ‘java’.

To initiate the compiler pipeline, the CLP has the responsibility to determine the source

files to process. Source files are collected and handed to the syntax analysis phase to continue

the pipeline.
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Files Lexer ParserTokens Abstract Syntax Tree

Figure 4.4: Syntax Analysis Phase.

ProcessJParser

ANTLRInputStream

ProcessJLexer

CommonTokenStream

Figure 4.5: Syntax Analysis Interactions.

4.2 Syntax Analysis Phase

Syntax analysis is the second phase of the pipeline; it takes in the files to parse and outputs

an abstract syntax tree. The purpose of this phase is to ensure that the input program

adheres to the ProcessJ syntax. In other words, the syntax analysis phase ensures the

input program has the correct structure. Without the correct structure, there is no way to

determine meaning that is required later in the pipeline.

There are four main components to converting from a source file into an abstract syntax

tree: an input stream, the lexer, a token stream, and the parser. Each component pulls

information from the element below, creating a slightly higher level of abstraction. From
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the bottom up, the input stream reads data from a file, and the input stream is used by

the lexer to create tokens. The token stream reads the tokens from the lexer, which feeds

the parser. Finally, a client reads a complete abstract syntax tree from the parser.

The syntax analysis phase is complicated. There are roughly 120 lexical patterns in the

ProcessJ grammar and far more syntax rules. Given the complicated nature of this phase,

it does not make sense to code the lexer and parser directly in Java. Instead, it is simpler

and more natural to use a language that is similar to Extended Backus-Naur Form (EBNF),

a language used to describe grammars.

4.2.1 ANTLR

ANother Tool for Language Recognition (ANTLR) [PQ95], generates the lexer and parser

for the ProcessJ compiler from a grammar file. Rather than write the lexer and parser by

hand, ANTLR allows the programmer to describe the syntax of a language in a domain

specific language similar to EBNF and generate a lexer and parser from the grammar.

An ANTLR grammar consists of two logical parts: a header and body. In the header,

there is meta-data about the grammar and details that help the code generator. The body

consists of the lexical and syntactic rules of the grammar. There is nothing to distinguish

the header from the body in the file; it is merely a way to distinguish between the meta-data

and the rules.

The meta-data, or header of the grammar, is composed of options, tokens, and a section

to directly add user-defined code. First, options are a set of key-value pairs that alter the

code generated by ANTLR. After the options, the tokens section, in combination with the

lexical rules, define the tokens the lexer will produce. Finally, ANTLR provides a section to

add user-defined code, which the code generator copies directly into the generated classes for

the lexer and parser. This section will describe the options used in the ProcessJ compiler,

give a brief overview of the token section, and explain the purpose of the user-defined code.

As stated previously, ANTLR grammar options are a set of key-value pairs that alter the

generated code. The ProcessJ grammar utilizes five grammar options: language, output,

backtrack, memoize, and ASTLabelType, as displayed in Figure 4.6.

First, the language option tells the code generator what language to generate the lexer
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opt ions {
backtrack = true ;
memoize = true ;
output = AST;
ASTLabelType = ProcessJTree ;

}

Figure 4.6: ANTLR Grammar Header Options.

and parser. The default language is Java, so the option is not used explicitly.

Next, the output option defines the data structure that the generated recognizer will

generate [Par07]. The ProcessJ grammar specifies that the generated code should produce

an abstract syntax tree (AST) as the final product. Using AST also allows the programmer

to use tree construction operators in the parser rules; these will be discussed later.

Backtracking allows the generated parser to try alternative rules, should the first rule

match fail. Once a rule fails, the input is rewound, and the next alternative is tried.

Backtracking has performance issues, and turns the usually linear time LL(*) algorithm

to an exponential time algorithm [Par07]. Of course, the alternative to backtracking is to

complicate the grammar by pulling out common sub-expressions or adding explicit syntactic

or semantic predicates. Fortunately, there is a way to complement backtracking in order to

bring the algorithm back to linear time.

To combat the performance problems with backtracking, the memoization option is

enabled. The memoization option enables a dynamic programming technique that achieves

linear time by saving partial parsing results. Saving the partial parsing results is not without

consequence, however. Memoization increases the total amount of memory necessary to

parse the input; however, this is an acceptable trade for the simplified grammar.

The final option used in the ProcessJ grammar is ASTLabelType. Since the ANTLR

code generator does not make any assumptions about the type of AST created, ANTLR

allows a base type to be specified. The base AST type in ProcessJ is ∼.ast.ProcessJTree.

After specifying each of the options, the next portion of the grammar header is the

tokens section. The tokens section specifies all the keywords, operators, and imaginary

tokens, as seen in Figure 4.7.

Imaginary tokens are tokens that are not directly associated to specific text. However,
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tokens {
// o p e r a t o r s and o th er s p e c i a l chars
AND = ’&’ ;
AND ASSIGN = ’&=’ ;
ASSIGN = ’=’ ;
BIT SHIFT RIGHT = ’>>> ’ ;
. . .
// keywords
ASSERT = ’ a s s e r t ’ ;
BOOLEAN = ’ boolean ’ ;
BREAK = ’ break ’ ;
BYTE = ’ byte ’ ;
. . .
// tokens f o r imaginary nodes
ALT CASE;
ARGUMENT LIST;
ARRAY DECLARATOR;
ARRAY DECLARATOR LIST;
ARRAY ELEMENT ACCESS;
. . .

}

Figure 4.7: ANTLR Grammar Header Tokens.

@lexer : : header {
package edu . unlv . c s . p r o c e s s j . a n t l r ;
}

@lexer : : members {
public boolean preserveWhitespacesAndComments = fa l se ;
}

Figure 4.8: ANTLR Grammar Header Lexer Header and Members.

imaginary tokens can indicate to the tree adapter the type of node to create. More details

will be given on the tree adapter later in the chapter. ANTLR allows tokens or character

literals in parsing rules. Even though it is possible to use character literals for keywords

and operators within parser rules, the generated code is much cleaner after declaring all the

character literals as tokens.

The last header section is the user defined code section otherwise known as named

global actions [Par07]. There are four global actions used in the ProcessJ grammar: the

lexer header and members, and the parser header and members. Each action is a place

holder for code to insert at certain positions in the generated code.

Lexer header and members actions are simple. The lexer header action, as seen in
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@header {
package edu . unlv . c s . p r o c e s s j . a n t l r ;

import java . u t i l . L i s t ;
import java . u t i l . Stack ;

import edu . unlv . c s . p r o c e s s j . a s t . ProcessJTree ;
import edu . unlv . c s . p r o c e s s j . N o t i f i c a t i o n ;
}

@members {
private f ina l N o t i f i c a t i o n n o t i f i c a t i o n = new N o t i f i c a t i o n ( ) ;
private f ina l Stack<Str ing> paraphrases = new Stack<Str ing >() ;
private St r ing f i l ename ;

@Override
public void emitErrorMessage ( S t r ing e r r o r ) {

St r i ngBu i l d e r message = new St r i ngBu i l d e r ( getFi lename ( ) ) . append ( ‘ ‘ ‘ ‘ )
. append ( e r r o r ) ;

n o t i f i c a t i o n . addError ( message . t oS t r i ng ( ) ) ;
}
// more methods . . .
}

Figure 4.9: ANTLR Grammar Header Parser Header and Members.

Figure 4.8, is inserted before the lexer class definition; therefore, the only necessary code is

the package declaration. The lexer members action is a place to put lexer field declarations

and functions. There is a single boolean field, preserveWhitespacesAndComments, which

does exactly what the name indicates. When true, the white space and comments are

preserved in the token stream; when false, the white space and comments are ignored.

Moving on to more interesting code, we will now look into the parser header and members

actions, as shown in Figure 4.9. Similar to the lexer header and members actions, the header

action is the placeholder above the class declaration, and the members action is the place

to define fields and member functions. The parser members action contains three fields and

nine methods.

Inside the parser members action, there are three fields: notification, paraphrases,

and filename. The notification field is an object that maintains error information.

When the parser comes across an input that it cannot recognize, it will file an error in the

notification. The message the parser will file in the notification is determined by the
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paraphrase field. Messages are pushed onto the paraphrase stack when the parser can

recover from failure. The paraphrase stack is popped, and the value is discarded after a rule

has been successfully parsed. However, when there is a failure, the top of the paraphrase

is popped and used to provide a helpful error message. Error handling will be explained

in a later section. Finally, the filename field is used to store the file name of the input so

that it can be passed along to the AST.

ProcessJ parser members action defines several methods. This will not be described in

detail because the main purpose of the members action methods support the error handling

and recovery. Note, however, that this section is copied into the generated parser code.

After the grammar header, the heart of the grammar – the parser and lexer rules – are

defined. Going through each of the rules individually would be a long and arduous task.

Instead, what parser and lexer are, their roles and responsibilities, their interface, and how

the generated implementation works will be described in detail.

4.2.2 Lexer

So far, the term ‘lexer’ has been used liberally and without sufficient explanation. This

section gives a little background on what a lexer is, its roles and responsibilities in the

ProcessJ compiler, and how ANTLR implements the code for the lexer from the grammar.

A lexer, or lexical analyzer, reads input characters of the source program, matches them

by patterns, groups them into lexemes, and produces as output a sequence of tokens for

each lexeme in the source program [ALSU07]. In that description, there are three terms

that can be confusing: token, pattern, and lexeme.

• A token is represented in ANTLR by the Token interface, and is implemented by the

CommonToken class. The type of a token is a uniquely generated integer representing

the token name. The token also contains information about its position in the source

program, such as the line number and position within the line.

• A pattern is a description of the form that the lexemes of a token may take [ALSU07];

it is implemented as a lexical rule in the grammar and similar to a regular expression.

• A lexeme is the string value associated to a token instance. In other words, when
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Figure 4.10: Example Lexical Rule DFA.

HEX LITERAL : ’ 0 ’ ( ’ x ’ | ’X ’ ) HEX DIGIT+ INTEGER TYPE SUFFIX? ;

fragment
HEX DIGIT : ( ’ 0 ’ . . ’ 9 ’ | ’ a ’ . . ’ f ’ | ’A ’ . . ’F ’ ) ;

fragment
INTEGER TYPE SUFFIX : ( ’ l ’ | ’L ’ ) ;

Figure 4.11: Example Lexical Rule.

the lexer matches the input to a pattern, it generates a token with the value of the

matching lexeme.

In the ProcessJ grammar, the complex tokens are specified using patterns, while sim-

ple tokens are specified as the strings they match. Figure 4.11 displays a sample of an

ANTLR pattern. In the sample, the HEX LITERAL is a full pattern, while HEX DIGIT and

INTEGER TYPE SUFFIX are fragments. A fragment cannot generate a token by itself, but it

allows reuse of a pattern to other patterns. In this case, HEX LITERAL matches a hexadeci-

mal number as accepted by Java. For instance, a value like ‘0x1A’ would be a valid value.

The compiled rule is expressed as a deterministic finite automata in figure 4.10.

One of the benefits of the ANTLR generator is its ability to generate readable code for

the parser and lexer. When there is an issue with how the tokens or valid input are not

parsed correctly, it is nice to step through the code and understand what is going on. Now

that we have an idea of how the lexical rules look in the grammar, we can look at the code

generated in ∼.ProcessJLexer.

To start, each token is converted into a field. For instance, the token AND generates

the following field: public static final int AND = 4. These integers are used in later

generated methods to set the type field.

After the token integers have been generated, the ANTLR generator defines a method

to recognize each token. Figure 4.12 is an example of the generated code for the character
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// ANTLR s t a r t ”AND”
public f ina l void mAND( ) throws Recognit ionExcept ion {

try {
int type = AND;
int channe l = DEFAULT TOKEN CHANNEL;
// edu/ unlv / cs / p r o c e s s j / a n t l r / ProcessJ . g : 1 9 : 5 : ( ’& ’ )
// edu/ unlv / cs / p r o c e s s j / a n t l r / ProcessJ . g : 1 9 : 7 : ’& ’
{

match ( ’&’ ) ;
}

s t a t e . type = type ;
s t a t e . channel = channe l ;

}
f ina l ly {
}

}

Figure 4.12: Example Generated AND Method.

literal token AND. The methods for character literal tokens are simple. First, the type and

channel are set. The type is set to the current token type, in this case the AND, and the

channel is set to default. ANTLR has two channels: DEFAULT TOKEN CHANNEL and HIDDEN.

The default token channel is the channel usually used by the parser, and the hidden channel

is used to output comments and white space characters. For instance, in the COMMENT and

WS rules, the channel is switched to hidden.

The core of this method is the call to match. Inside match, the lexer checks that the

look ahead is as expected, in this case the ‘&’ character. If it is in the correct state, the

input is consumed and control returned. If the lexer is not in the correct state, an exception

is thrown so the driver can try to recover or add an error notification.

Finally, the last portion of the generated compiler is the mTokens method and its asso-

ciated deterministic finite automata (DFA). The mTokens method uses a table-driven DFA

to determine which token is next in the input. The DFA is string encoded during code

generation because the resulting table could potentially make the lexer class so big that

the Java compiler will not allow it to compile. Instead, the DFA is unpacked into an array

of short type. The super class of ∼.ProcessJLexer is the lexer provided by the ANTLR

run-time. That class calls the mTokens method from its nextToken method.

Trying to explain which method calls another can get confusing. Instead, examine
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match

mTokens

predict

mAND

LexerCommonTokenStream ProcessJLexer DFA

nextToken

Figure 4.13: Sequence Diagram for nextToken.

Figure 4.13 to determine an example flow of control for generating a new token.

4.2.3 Parser

While the lexer uses patterns to generate a stream of tokens, the parser takes that stream

of tokens as input; the output is an AST. The role of the parser is to ensure that the

syntax of the input matches the rules described in the grammar. In other words, the parser

ensures that source files that are input into the compiler are syntactically correct or that

they conform to the language. For instance, the following English sentence is syntactically

correct, “John dangles the sky.” The sentence has a subject, a verb, an object and they are
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in the correct order of an English sentence. Of course, the sentence does not make sense.

That does not matter to the parser; the parser checks that the input has the correct form

of a ProcessJ program.

To give some background and understand the underpinnings of the ANTLR language,

we will start with context-free grammars (CFG) and EBNF. Digging a little deeper, the

LL(*) grammar (pronounced LL-Star), as well as top-down recursive-descent parsing, will

be explained. The ANTLR rules in the ProcessJ grammar will be introduced as well as the

parser implementation, ∼.ProcessJParser.

The following definition is from Compilers [ALSU07]. A CFG consists of terminals,

non-terminals, a start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed.

2. Non-terminals are syntactic variables that denote sets of strings.

3. In a grammar, one non-terminal is distinguished as the start symbol, and the set of

strings it denotes is the language generated by the grammar. Conventionally, the

productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the terminals and non-

terminals can be combined to form strings. Each production consists of:

(a) A non-terminal called the head or left hand side (LHS) of the production; this

production defines some of the strings denoted by the head.

(b) The symbol ‘:’ which separates the left side from the right side.

(c) A body or right hand side (RHS) consisting of zero or more terminals and non-

terminals. The components of the body describe one way in which strings of the

non-terminal at the head can be constructed.

To formally describe a context-free language (CFL), a domain specific language is

necessary to describe a CFG. This language for describing languages is a meta-language

called EBNF. The ANTLR grammar language is based on EBNF, and is derived from

YACC [Joh79], where rules begin with a lowercase letter and token types begin with an up-
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a : b c ;
b : ‘b ’ ;
c : ‘ c ’ ;

Figure 4.14: Sample Parser Rule.

a : ‘ a ’ b
| ‘ a ’ c
;

b : ‘b ’ ;
c : ‘ c ’ ;

Figure 4.15: LL(2) Parser Rule.

percase letter [Par07]. Other features of the language include optional elements, repeated

elements, and parenthesized groups of grammar elements, called sub-rules.

Grammars defined in ANTLR need to be LL(*) grammars. An LL(*) grammar parses

the input from left to right, and always takes the left-most derivation. For instance, consider

Figure 4.14, where a production a has two non-terminals, b and c, on its RHS. In an LL

grammar, b will always be derived before c because b is the left-most non-terminal.

Now that we know what the LL in LL(*) stands for, let us examine what the ‘*’ means.

The most basic form of an LL grammar is LL(1). An LL(1) parser will only look ahead

one token before the input is consumed. That means that if a rule has two alternatives, as

in Figure 4.15, and the first token is common between both alternatives, the parser cannot

tell which alternative is the correct one to take. This grammar is non-deterministic with

only one look-ahead. In the case of Figure 4.15, the terminal ‘a’ is the first token; however,

without looking at the next token, the parser cannot tell if it should execute b or c.

In order for the parser to recognize the language described in Figure 4.15, either the

grammar needs to be left factored or it needs to be termed as LL(2) instead of LL(1). In

the first case, we would need to factor out the common sub-expression ‘a’ into a new rule

as in Figure 4.16. The latter case means the parser can use a look-ahead of no more than

two tokens.

The general form of this increase in look-ahead is LL(k) where k is some predefined finite

number. Utilizing a larger look-ahead can make the grammar simpler while maintaining

linear time complexity. Unfortunately, the look-ahead needs to be finite, and it needs to be
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a : ‘ a ’ d ;
b : ‘b ’ ;
c : ‘ c ’ ;
d : b
| c
;

Figure 4.16: Left Factored Parser Rule.

de f : mod i f i e r ∗ c l a s s D e f
| mod i f i e r ∗ i n t e r f a c e D e f
;

Figure 4.17: Rule That Cannot Be Parsed With k Look-Ahead.

known when the compiler is written, not at run time. Consider a grammar example from

The Definitive ANTLR Reference [Par07], as shown in Figure 4.17. The def rule has two

alternatives, and both begin with zero or more modifiers. An LL(k) parser cannot recognize

this rule because it is not possible to determine the number of look-aheads the parser will

need. Therefore, it is considered non-deterministic for LL(k).

An LL(*) parser generator, like ANTLR, does not need to specify k. It uses an arbi-

trary look-ahead by generating a DFA for the look-ahead language to predict the correct

alternative. It is not without limitation, the look-ahead language cannot have unreachable

states, no dangling states, and at least one accept state for each alternative [Par07]. In

order to implement the DFA look-ahead, ANTLR generates a syntactic predicate.

Using LL(*) increases the expressiveness of the grammar, but it is no silver bullet.

LL(*) grammars can only predict with a look-ahead that can be expressed as a DFA. That

means the decision is only as powerful as a regular expression. Consider the grammar in

Figure 4.18, which is used in the Definitive ANTLR Reference [Par07]. It is not possible

to predict which alternative to choose because it is not possible to construct a DFA that

matches parentheses around a recursive rule due to the pumping lemma [Sip05].

In cases where it is not possible to use a DFA to predict, ANTLR can uses a syntactic

predicate to gate the alternatives. ANTLR generates a check before entering the alternative,

which uses a mini-parser to check if the alternative fits. When backtracking is enabled, as

in the ProcessJ grammar, the auto-backtracking feature automatically generates syntactic

52



www.manaraa.com

s : e ‘% ’
| e ‘ ! ’
;

e : ‘ ( ’ e ‘ ) ’
| INT
;

INT : ‘0 ’ . . ‘ 9 ’+ ;

Figure 4.18: Not LL(*).

predicates where it is necessary.

It should be noted that even though ANTLR uses many strategies to make the grammar

more expressive, and also can use an arbitrary look-ahead, it still cannot handle left recursive

grammars. This limitation is determined by the LL nature of the parser. It is not possible

to generate an LL parser from a grammar that has left recursion because it would send the

parser into an infinite loop.

LL grammars are synonymous with top-down parsers. Top-down parsers begin with the

start rule and attempt to predict which subsequent rules to match. There are two variations

of the top-down parser: table driven and recursive descent. In table-driven parsing, the

parser uses an explicit stack and a look-up table to match input terminals to non-terminals.

However, in recursive descent, the parser uses an implicit stack, called the activation stack,

and directly matches grammar rules to methods.

In 1980, Sir Anthony Hoare was presented the Turing Award for his fundamental con-

tributions to the definition and design of programming languages. In his acceptance speech,

he said of top-down recursive descent parsers [Hoa81]:

I can still recommend single-pass top-down recursive descent both as an imple-

mentation method and as a design principle for a programming language. First,
we certainly want programs to be read by people and people prefer to read things

once in a single pass. Second, for the user of a time-sharing or personal com-

puter system, the interval between typing in a program (or amendment) and
starting to run that program is wholly unproductive. It can be minimized by

the high speed of a single pass compiler. Finally, to structure a compiler accord-
ing to the syntax of its input language makes a great contribution to ensuring
its correctness. Unless we have absolute confidence in this, we can never have

confidence in the results of any of our programs.
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Sir Anthony Hoare mentions three distinct advantages to top-down recursive descent

parsers in his speech; they are human readable, the operate at high speed, and the match

between the parser code and the grammar ensures correctness. Each of these points deserves

greater attention.

First, the parser generated by ANTLR is human readable. It is helpful to step through

the execution of the compiler to understand exactly what it was doing. It is perfectly

possible to look at the generated code and understand what is happening.

Sir Anthony Hoare’s second point was regarding performance. This being my initial

iteration of the compiler, and the first compiler I have ever written, my focus has not been

on performance so much as on getting it to work and to make the implementation as easy

to understand as possible. The next iteration of the compiler will have a baseline set and

improved performance.

The final point Sir Anthony Hoare made was that structuring the code according the

the syntax of the language helps ensure correctness. ANTLR conforms two-fold to this

point. First, the code is generated directly from the specification, so the code cannot help

but conform to the grammar. Second, there is a one-to-one mapping between the grammar

rules and the parser methods. Given these two features of ANTLR, the ProcessJ parser

conforms to Sir Anthony Hoare’s recommendations.

4.2.4 Error Reporting & Recovery

In addition to the benefits of using a top-down recursive descent parser, as mentioned

previously, the parser also has excellent error diagnostics [FCL09]. Before work began on

the ProcessJ grammar, my adviser, Dr. Pedersen had an implementation of the ProcessJ

grammar, using the CUP[Hud05] LALR parser generator. He lamented the difficulty of

providing meaningful error messages.

According to Parr [Par07], “The quality of a language application’s error messages and

recovery strategy often makes the difference between a professional application and an

amateurish application.” Error reporting and recovery was a major benefit in ANTLR’s

favor when deciding to switch from CUP.

Since error reporting is so crucial to a language’s success, the ProcessJ compiler had
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<<ru le−name>>
@ini t { setCurrentParaphrase ( ”<<message to i n d i c a t e ru le>>” ) ;}
@after { removeCurrentParaphrase ( ) ;}

: << RHS >>
;
catch [ Recognit ionExcept ion e ] {

r epor tEr ro r ( e ) ;
<<RECOVER>>

}

Figure 4.19: General Form of Rule with Error Reporting.

to have the capability to give meaningful feedback to the user. Figure 4.19 indicates the

general form of an ANTLR rule supporting error reporting.

The rule begins with an init annotation. Inside is a block of code that ANTLR will

execute before matching the rule. A stack was maintained for error reporting. Before

each rule begins, a phrase is pushed onto the stack that indicates what type of rule the

parser is in. In this way, an intuitive error is generated that can express what the parser

is attempting to match. For instance, it could give an error that looks like the following,

“line 1:12 mismatched input ‘;’ expecting ‘)’ in expression.”

If the input does throw a RecognitionException, the rule will report the error by means

of the reportError method. Taking the advice of Fowler [FP10], the Notification pattern,

described in Section 5.8, was used to separate the error collection logic from the parser.

Separating the error collection also has the benefit of code reuse, because the notification

is used in the semantic analysis part of the pipeline as well.

Regarding ANTLR’s error recovery strategies, ANTLR has automatic error recovery

based on ideas from Wirth [Wir78], Topor [Top82], and Grosch [Gro90]. There are three

strategies: single token insertion, single token deletion, and scanning for the following

symbols.

Single token insertion involves inserting a symbol where it makes sense so the parser

can continue. Think of entering a complex mathematical formula, one involving several

nested parentheses. If you make a mistake and enter one too few closing parentheses, the

parser can report an error saying you are missing a parenthesis, and will specify the line

and position where it should be entered.
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int x = (m ∗ ( x + b) ) ) ;

Figure 4.20: Single Token Deletion.

statement
@in i t { setCurrentParaphrase ( ” in statement ” ) ;}
@after { removeCurrentParaphrase ( ) ;}

: channelCommWriteStatement
| . . .
| whileStatement
;
catch [ Recognit ionExcept ion e ] {

r epor tEr ro r ( e ) ;
consumeUntil ( input , SEMI) ;
input . consume ( ) ;

}

Figure 4.21: Panic Mode Recovery.

On the other hand, single token deletion is useful if you enter too many closing paren-

theses. Consider the input in Figure 4.20. In this case, the parser recognized that there

was an extra parenthesis, removed it, and moved on.

The last strategy used in error recovery is to scan the input for following symbols. This

could be seen as a form of panic mode [ALSU07]. In Figure 4.21, for example, if there is an

error recognizing the input, then the error is reported, and tokens are consumed until the

parser sees a semicolon indicating the end of the statement.

Given the lexer is able to successfully generate each of the tokens, and the parser is able

to recognize the input without error, the final result of the syntax analysis phase is an AST.

4.2.5 Abstract Syntax Tree

The previous section did not mention one of the most important responsibilities of the

parser. It mentions the theory of a parser, how to implement that theory, and how the

parser reports and recovers from errors. However, one of the primary responsibilities of

a parser is to take a one-dimensional stream of tokens and convert it into a hierarchical

syntactic structure of the source program [ALSU07], called an AST.

An AST represents the source program during semantic analysis; it represents the rela-

56



www.manaraa.com

'+'

'a' '1'

Figure 4.22: Homogeneous AST.

tionships between tokens, or nodes. The AST also is a repository for program meta-data

later in the pipeline.

This section will first discuss tree structure patterns, how the compiler represents a tree

in memory, and the structure of the tree. Once the tree is structured, the tree can be built

from the token stream. Finally, this section will describe the AST class implementation in

ProcessJ.

Tree Structure Patterns

There are three tree structure patterns that were considered when designing the AST:

Homogeneous AST (HAST), Normalized Heterogeneous AST (NHAST), and Irregular Het-

erogeneous AST (IHAST). Each pattern is slightly different from the next, and each pattern

has its pros and cons.

In a HAST, all nodes are of the same type. The only difference between instances of a

node is the token they encapsulate. Using only one node type has the benefit of uniformity,

which makes walking the nodes easy. Each node has a collection of children as well as a

token. This is easy to learn and easy to use.

From Figure 4.22, it is possible to visualize a HAST. All elements have the same shape,

and all elements have a list of children. The only way to distinguish one from the other is

by means of the token.
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'+'

'a' '1'

Figure 4.23: Normalized Heterogeneous AST.

The disadvantage of using a HAST comes with accessing a specific child or storing

information about a node. There is one uniform way to access children, as a collection;

after that, you need to search the collection to find a specific child. As an alternative to

searching for a child, you can access it from a specific index. However, this approach is

also flawed. Code throughout the project needs to know the location of the child. Similar

situations happen to data regarding a node: spreading the logic around like that breaks

encapsulation.

A HAST might be acceptable for simple languages, but ProcessJ needs something a

little more powerful. The Normalized Heterogeneous AST is similar to the HAST, in that

it implements a common interface. As a result, a client can treat the tree as a HAST, and

it can encapsulate node-specific data members by using different node types. Each node

type is implemented by its own class. In this way, it is possible to centralize access to node

specific data.

Figure 4.23 attempts to visualize a NHAST. Each element is implemented with its own

type, depicted by varying internal shapes and colors. The external of each shape is still the

same. Every element has a list of children, a token and so forth.

Like the HAST, the NHAST also uses a uniform method for child access. However,

unlike the two previous tree patterns, the IHAST uses an irregular child list representation.

In other words, in an Irregular Heterogeneous AST a different class is used for each node

58



www.manaraa.com

'+'

'a' '1'

Figure 4.24: Irregular Heterogeneous AST.

type, similar to the NHAST; however, there is no uniform method for child access. Children

are accessed by way of accessors and mutators, which encapsulates child access. This pattern

also encapsulates node specific data by using a separate class for each node type.

Figure 4.24 depicts an IHAST. Each element has its own shape and color, and none

have a uniform appearance. The parent element, a binary expression, has exactly two slots

for children, each with an expected shape and color. The parent knows exactly how many

children it has, and any client that needs to use that element needs to know the application

programming interface (API) of that element.

The lack of any uniform treatment of AST nodes makes an IHAST difficult to use and

hard to learn. Since no single pattern has good encapsulation nor uniform access, the

ProcessJ compiler uses a combination of NHAST and IHAST. Each node type has its own

class implementation, and they all implement the same interface, just as in the NHAST.

However, in addition to the uniform method of child access, accessors and mutators were

added for child-specific access. In this way, it allows clients to access all children in a uniform

manner, and allow clients that need access to specific children to do so without spreading

child access logic all over the place. Now that we know how to structure the AST, let us

look at how the tree is built.
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v a r i a b l e D e c l a r a t o r I d
: IDENTˆ a r r a y D e c l a r a t o r L i s t ?
;

Figure 4.25: Example of Inline Tree Rule.

v a r i a b l e D e c l a r a t i o n
: m o d i f i e r L i s t type v a r i a b l e D e c l a r a t o r L i s t SEMI
−> ˆ(VAR DECLARATION m o d i f i e r L i s t type v a r i a b l e D e c l a r a t o r L i s t )

;

Figure 4.26: Example of Tree Rewriting Rule.

Tree Building

Before delving into the specifics of how nodes are created and related to their children,

this section starts with a general overview of the tree building and rewriting aspects of

the ANTLR grammar. After describing the grammar, the TreeAdaptor will be explained.

Finally, the ∼.ProcessJParser implementation will be described.

ANTLR offers great flexibility for tree construction, and is defined directly in the gram-

mar. Each grammar rule has several options on how to structure its result. As an intro-

duction, in Figure 4.25, the variableDeclaratorId rule has two components, IDENT and

arrayDeclaratorList. In this rule, the IDENT token becomes the root of the tree through

the use of the ‘^’ operator; the arrayDeclaratorList is made optional by the ‘?’ operator.

When the term ‘the token becomes the root of the tree’ is used, what is meant is that the

‘^’ operator indicates that ANTLR is to create a node, and place the other elements of the

rule as children of the new node. The result of running the variableDeclaratorId rule is

a new ProcessJTree that has zero or one of the results of the rule arrayDeclaratorList.

In order to understand what is going on, let us look at another example in Figure 4.26

that is more explicit. This example shows a list of rules and tokens that it expects to

match. After the parser has matched the input, it does a tree rewrite, as indicated by the

‘->’ operator. Everything to the right of the ‘->’ operator indicates how to restructure the

input. This rule indicates that a new node is created with the VAR DECLARATION token as

the root. The modifierList, type, and variableDeclaratorList elements are added as
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v a r i a b l e D e c l a r a t o r L i s t
: v a r i a b l e D e c l a r a t o r (COMMA v a r i a b l e D e c l a r a t o r ) ∗
−> v a r i a b l e D e c l a r a t o r+

;

Figure 4.27: Example of Exclusion and Collecting Input Elements.

children, and the SEMI token is not included in the tree. The tree construction in the rule

was written this way because it clearly shows how the tree structure will look after the rule

completes.

There are many more ways to rewrite the input tokens into trees in ANTLR. How-

ever, I would like to give an example of consolidating a complex statement into something

that is simpler, as in Figure 4.27. In this case, the only thing that is important is the

variableDeclarators in the rule. The COMMA is just syntactic sugar, and has no semantic

meaning. The COMMA helps separate the variableDeclarators, but after that point, they

are no longer necessary. All that is necessary is a list of these tokens; ANTLR allows us to

covert that complex set of tokens into a simple list of one or more variableDeclarators.

Now that we have a basic understanding of how the grammar describes tree construction,

let us look at how the nodes are created.

Creating nodes is best viewed by thinking of the structure first. Since the chosen struc-

ture of the AST is a hybrid NHAST / IHAST, we can look at it from the perspective of

a NHAST. In a Normalized Heterogeneous AST, each node is implemented by different

classes, but all the children implement a common interface. It also is important to keep

the tokens decoupled from the implementation class and centralize the node creation logic.

The solution is to create a new class, with the responsibility of knowing the conversion from

the token type to node implementation and returning the normalized type, just as in the

Factory pattern described in Section 5.4.

The implementation of the factory is the ∼.ProcessJTreeAdaptor. The main method

is the create method which takes a Token and returns a ProcessJTree. The method uses

the token type to determine which class to create. This is one of the cleverer ways how

ANTLR builds ASTs. The create method needs only declare the type of node to create.

The other methods of tree building are also delegated to the tree adapter, although

there is a default implementation in the base class provided by ANTLR.
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m o d i f i e r L i s t
: mod i f i e r ∗

−> ˆ(MODIFIER LIST mod i f i e r ∗)
;

Figure 4.28: Example of Imaginary Token.

procedureTypeDeclarat ion
@in i t { setCurrentParaphrase ( ” in proce s s d e c l a r a t i o n ” ) ;}
@after { removeCurrentParaphrase ( ) ;}

: m o d i f i e r L i s t PROCESS voidableType
IDENT formalParameterList ( b lock | SEMI)

−> ˆ(PROCESS[\$IDENT] m o d i f i e r L i s t
voidableType IDENT
formalParameterList b lock ?)

;

Figure 4.29: Example of a Rule With Multiple Variable Length Lists.

The lack of control in the node creation can be frustrating. There is no context attached

to the token, and the tree adapter does not know what rule it is in. However, by using

imaginary tokens, the context is not necessary. Imaginary tokens are the tokens that are

defined in the ‘tokens’ section of the header, and that do not have an associated pattern

or character literal. They are used to indicate something that the concrete tokens cannot

indicate.

Consider the rule in Figure 4.28. In rule modifierList, a new node is created for

MODIFIER LIST and each of the specified modifiers are added to it as children. When there

are a variable number of elements, such as the modifier list, a new node is created to hold

them. By always creating a node that holds modifiers, the node is able to encapsulate how

the modifiers are accessed.

Another benefit to encapsulating a variable length list in its own node, such as the

modifier list, is that any element that contains a list will be able to know where the next

element is without searching. Searching would get particularly problematic with rules like

procedureTypeDeclaration as seen in Figure 4.29. In the procedureTypeDeclaration,

there are two variable length lists, each of different types. It is much easier to implement

them as their own node to allow the PROCESS node to know where it can access each child.

Now that we know what the tree construction looks like from the grammar side, and
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sync : SYNCˆ parenthe s i z edExpre s s i on
;

Figure 4.30: Grammar rule for sync.

r oo t 0 = ( ProcessJTree ) adaptor . n i l ( ) ;
SYNC425=(Token ) match ( input ,SYNC, FOLLOW SYNC in sync9737 ) ;

i f ( s t a t e . f a i l e d ) return r e t v a l ;
i f ( s t a t e . backtrack ing==0 ) {

SYNC425 tree = ( ProcessJTree ) adaptor . c r e a t e (SYNC425) ;
r oo t 0 = ( ProcessJTree ) adaptor . becomeRoot ( SYNC425 tree , r oo t 0 ) ;

}
pushFollow ( FOLLOW parenthesizedExpression in sync9740 ) ;
parenthes i z edExpres s i on426=parenthes i z edExpre s s i on ( ) ;

s t a t e . f sp −−;
i f ( s t a t e . f a i l e d ) return r e t v a l ;
i f ( s t a t e . backtrack ing==0 ) {

adaptor . addChild ( root 0 , parenthes i z edExpres s i on426 . getTree ( ) ) ;
}

Figure 4.31: Partial Implementation of the sync Rule.

how it knows what type of node to create, let us look at the simple rule sync, shown in

Figure 4.30, and a portion of the code generated from that rule, as seen in Figure 4.31.

The sync rule has only two elements, the SYNC token and the parenthesizedExpression

element.

To start, a nil root is created; this is a non-null node that is empty, but can hold children.

The implementation then matches the SYNC token, checks if it was successful, and has the

adapter create a new node. Next, it makes the SYNC token into the root node, matches the

parenthesizedExpression, again checks for failure, and finally adds it as a child to the

root.

We now know how ANTLR defines tree rewrite rules, how nodes are created, and how the

generated implementation code works. The next section will cover the AST implementation.

ProcessJTree

Finally, we come to the implementation of the AST. The ∼.ast.ProcessJTree is the in-

terface that all AST nodes implement. A class diagram of ProcessJTree is displayed in
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<<interface>>

edu.unlv.cs.processj.ast

ProcessJTree
<<interface>>

org.antlr.runtime.tree

Tree

<<class>>

org.antlr.runtime.tree

BaseTree

<<class>>

edu.unlv.cs.processj.ast

ProcessJCommonTree CommonTree
<<class>>

org.antlr.runtime.tree

ProcessJ AST ANTLR Runtime

Figure 4.32: ProcessJ AST Class Diagram.
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Figure 4.2.5. Here we can see the static relationships between the ProcessJ implementation

and the ANTLR run-time.

From the diagram, it is easy to see how ProcessJTree extends the ANTLR run-time.

The ProcessJTree interface extends two interfaces: Visitable and the ANTLR run-time

interface Tree. Also in the diagram are the implementation classes, ProcessJCommonTree

and its ancestors CommonTree and BaseTree. The important thing to take away from these

relationships is that the interface within the project to use is the ProcessJTree, and the

base implementation is the ProcessJCommonTree.

Throughout the project, the impact from the ANTLR run-time was minimized. The

team had already switched the lexer and parser generator once. The ProcessJTree interface

was used in order to isolate that design decision, and the ProcessJCommonTree is extended

as a base implementation. None of the code uses the ANTLR run-time classes, with the

exception of the tokens. The ANTLR tokens are a convenient implementation, and never

needed to be extended.

Examining the AST class hierarchy, the Visitable interface defines only a single method

with signature void acceptVisitor(Visitor v). Extending this interface allows a node to

participate in the Visitor Pattern, as described in Section 5.3. Since the Visitor type is

an interface, nodes that are Visitable and Visitors are loosely coupled. In order to have

multiple strategies for implementing visitors, the AST was designed to know as little about

them as possible.

To extend the functionality that already exists within the ANTLR run-time,

ProcessJTree extends the Tree interface. Although the ProcessJTree extends the ANTLR

run-time Tree, using Tree directly in the code was avoided to minimize the ANTLR depen-

dency. In this way, the front-end strategy of the compiler can be changed at a later date.

It may be wise to further decouple the ProcessJTree from the ANTLR run-time by using

the Adapter Pattern [GHJV95], where Tree is needed instead of extending Tree.

Having all nodes in the AST implement ProcessJTree has two key benefits. First, it

allowed implementation of either a HAST (Section 5.5) or a NHAST (Section 5.6). Second,

parents of the tree are decoupled from their children.

The implementation of the AST is a good closing point to this section on syntax analysis,
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Figure 4.33: Semantic Analysis Pipeline Phase.

since the AST is the result of the syntax analysis phase and is used throughout the semantic

analysis phase.

4.3 Semantic Analysis Phase

Semantic Analysis is the third phase of the ProcessJ compiler pipeline. In the previous

stage of the pipeline, syntax analysis, the compiler checks that the input program has the

correct grammatical structure. However, it does not check that the input program makes

any sense. The syntax analysis phase also builds an AST.

It is the responsibility of the semantic analysis phase to ensure, to the best ability of

the compiler, that the input program ‘makes sense,’ and to prepare the AST for output.

This section will first go over each of the sub-phases of the semantic analysis phase, then

turn to the implementation.

The semantic analysis phase is for all the checks of things that ‘make sense,’ and the

phase that prepares the AST for output. The semantic analysis phase was split into three
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sub-phases: preprocess, analyze, and transform.

Important architectural decisions are also covered in this section. There are three main

topics for implementation of the semantic analysis phase: the Visitor, tree walking, and

actions.

4.3.1 Preprocessing

In the preprocessing sub-phase, the AST is prepared for the analysis phase. By ‘prepared’,

is meant that the abstract syntax tree is made more uniform, and certain features of the

tree are identified. Three tasks of this sub-phase are identifying global variables, initializing

variables, and setting default values.

Identifying global variables is the first task of the preprocessing sub-phase. The term

‘global variable’ is kind of a misnomer. ProcessJ allows for package-visible constant values.

Since ProcessJ is process-oriented, the team wanted a way for processes to refer to constant

values across multiple process without having to send the value back and forth.

The process of identifying these elements of the AST is rather easy. Since ProcessJ

has a limited number of top-level elements, as the program explores the AST, the variable

declarations at the top-level are marked as global. Any variable declaration that is not

explicitly set as global is implicitly local; since the global variable declarations are at the

top of the AST, the sub-phase need only look at the top-level elements. Looking at only

top-level elements saves the phase a great number of elements in the whole input source.

The second sub-phase of the preprocessing phase initializes variables. ProcessJ does not

require initialization of some types; the compiler automatically initializes variables for these

types. For instance, variables of barrier, channel, and timer types do not need initialization.

However, for the sake of uniformity in the analysis phase, this sub-phase initializes these

variables.

Finally, default values are set for certain elements of the AST. For now, the only instance

where this need happen are ∼.ast.Guard nodes. Guard elements have preconditions; if no

precondition is set in the source, a default of true is set. Although this is a simple task,

other language features might be adopted later that may need default values set in the AST.

After the AST has been preprocessed, it is ready to be analyzed.
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4.3.2 Analyze

Analysis is what most people think of when it comes to the semantic analysis phase. This

phase has three main tasks during this early stage in the development of the ProcessJ

compiler: scope definition, symbol definition, and type checking. These three tasks are the

quintessential semantic analysis tasks for a statically typed language like ProcessJ.

The scope of a variable is the range of statements in which the variable is visible; in

other words, the range from which the variable can be referenced [Seb07]. ProcessJ is a

statically scoped language. In a statically scoped language, the compiler is able to figure

out where it is legal to reference a variable. Static scoping allows the compiler to find logical

errors in source programs. For instance, if a variable x is used in some block, but x is never

given a value or it is declared later in the code, it is ambiguous what x means at that point.

By tracking scopes, it is possible to resolve symbols. A symbol is an identifier. A symbol

could be anything that is named, such as a label, process, record, variable, or the type of a

variable. It is necessary to find where the symbols are declared or defined in order to link

the use of elements with the declarations and to link the declarations to the definitions.

The difference between a symbol declaration, definition, and reference could be confus-

ing; however, it is important to understand the different forms a symbol can take.

A symbol reference is used when a symbol is referenced in an expression. For instance,

in the expression ‘x / y’, x and y are both variables that are symbol references. To know

what this expression means, we need to look at the declaration of each variable.

That same expression, ‘x / y’, could have different results, depending on how the vari-

ables were declared. The expression would be different if only one variable were declared as

an integer than if both variables were integers. The declaration assigns a type to a variable.

ProcessJ has user-defined types. For instance, a record is a user-defined data type. A

record is given a name, and there are several variables that could be associated to that data

type, as in Figure 4.34. For example, the symbol Point is defined as a pair of integers, x

and y.

Ultimately, symbol references are resolved so they can be type checked. ProcessJ is a

statically typed language, so type checking is done during compile time. When a symbol

is used in an expression along with other symbols, the compiler checks if the combined
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record Point {
int x ;
int y ;

}

Figure 4.34: Example Record Definition.

ScopedNode

Scope Symbol SymbolDeclaration

DeclaredSymbol Type

Figure 4.35: ScopedNode Class Diagram.

expression is allowed. After a reference is associated to its declaration, and all declarations

are associated to definitions, it is possible to resolve a reference to a definition or type. At

that point, it is possible to determine if the combinations of expressions used in a source

program are legal. For instance, an expression ‘p() + x’, could be legal or illegal, depending

on how p is defined and how x is declared. If p were defined as void, the expression would

not make any sense and so it would be illegal.

To understand the implementation of this phase, abstractions and how they are used will

be described. Abstractions are how the semantic constructs of scope, symbol, declaration,

and definition are represented in the abstract syntax tree. Then, we will look at how each

of these abstractions are used to analyze the AST.

Five interfaces in the ∼.ast package abstract the semantic constructs for the analysis

sub-phase: Scope, ScopedNode, SymbolDeclaration, Type, and Symbol.

The Scope interface represents a static scope. Packages, records, protocols, protocol

cases, processes, blocks, for loops, etc., are examples of static scopes. Each are a place

where symbols can be referenced, defined, or declared. The Scope has methods for defining
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and resolving symbols as well as importing symbols from other packages. Although there

are many implementations of Scope, they inevitably delegate the definition and resolution

of symbols to the SymbolTable class.

The ScopedNode represents any element that is within a scope and might need to re-

solve a symbol. For instance, all Symbols are ScopedNodes because they always need to

be resolved. Other examples are symbol declarations, type definitions, and expressions.

ScopedNode ensures two methods, getEnclosingScope and setEnclosingScope. It is

convenient for elements to have uniform access to their enclosing scope.

A SymbolDeclaration declares a symbol. There are several places where a symbol can

be declared: formal parameters, local variables, protocol members, and record members.

Next, a Type represents a symbol definition. There are two sorts of Type: built-in and

user-defined. User-defined types are records, protocols, protocol cases, and procedures. In

the case of user-defined types, the type is an explicit symbol definition. In the case of a

built-in type, the symbol is defined in the language. Barriers and timers are two examples

of built-in types. There is no code to look at and see the definition; however, their semantics

are built into the language.

Finally, the Symbol represents a name. A symbol just abstracts a string that can be

used to define or resolve something.

Since Scope is the center of symbol resolution, the following is a brief overview of how

the Scope works with the other abstracts to provide symbol resolution. Figure 4.36 depicts

the collaborations of the Scope class.

A Scope is a ScopedNode, which is to say, a scope has an enclosing scope. The only

scope without an enclosing scope is the global scope. From its definition, a ScopedNode has

an enclosing scope. Symbols are used to define and resolve Types and SymbolDeclarations

within a scope. For instance, while tree walking, a NameExpr is visited, and the compiler

needs to determine its type. The current scope is queried through the resolve method,

and the SymbolDeclaration is found. With the SymbolDeclaration, the type symbol can

then be queried to find the declared type from the scope.
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Figure 4.36: Collaborations of Scope.

4.3.3 Transform

The final semantic analysis sub-phase transforms the AST. After the analysis phase, we can

do what we like to the AST to make it useful for output, more efficient, or to implement some

feature of the language. Currently, only one transformation of this sort exists; however, there

are many transformations required to support mobile processes and polymorphic resumption

interfaces.

The article Mobile Process Resumption in Java Without Bytecode Rewriting [SP11],

describes a method to allow mobile processes to transparently suspend and resume in the

same control and variable state by manipulating the AST. Only one of the required trans-

formations is currently implemented. The transform takes all local variables and makes

them fields in the resulting Java source.

Semantic Analysis is composed the three sub-phases: preprocessing, analysis, and trans-

formation. This next section will explore how these tasks are accomplished.

71



www.manaraa.com

4.3.4 Actions

There is a great deal of logic in the semantic analysis phase. Separation of concerns is

a major concern for tasks during semantic analysis. It is all too easy to start adding

responsibilities to a class simply because the data needed is at hand in the current method.

It is also difficult to centralize logic when it can be distributed across all the classes that

comprise the AST.

Luckily for compiler writers, the Gang of Four defined a suitable solution to the problems

that plague semantic analysis in their book Design Patterns [GHJV95]. In the Visitor

pattern (Section 5.3), each bit of logic can be centralized into highly specialized classes.

The Visitor then traverses the AST and executes that logic across it.

Although the ProcessJ compiler does use the Visitor pattern, it implemented in the

usual manner. The Visitor interface defines the contract required to iterate the AST.

This was left open to implement the visitor pattern differently in the future. For now, there

is one implementation, ActionVisitor.

The ActionVisitor encapsulates the tree walking, and takes a collection of Actions

to execute as it traverses the AST. An Action represents some logic that is executed as a

node is visited. Tree walking is the process of traversing the AST. The actions are clear

and their executions are uniform. It is easier to understand how all the actions work once

familiar with how one of them work.

There are two methods for each element in every action: pre and post. The pre method

is called before the element is considered visited, and post is called after. In the base action,

AbstractAction, every method calls one of two methods, preCatchAll and postCatchAll.

The ‘catch all’ methods are there for convenience.

Sometimes the same exact action needs to be performed on all elements. For instance, in

the LogAction, as shown in in Figure 4.37, a message is logged and the indent is increased

before an element is visited. After the element is visited, the indent is decreased. However,

it is possible to write element-specific code, as in the Source element in the LogAction.

The Source element needs special treatment in the log action because the current filename

is stored.

It may be confusing when to choose between pre, post and the catch all methods. The
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public f ina l class LogAction
extends AbstractAct ion {
. . .
@Override
public void postCatchAl l ( f ina l ProcessJTree t r e e ) {

indent −= 2 ;
}

@Override
public boolean preCatchAll ( f ina l ProcessJTree t r e e ) {

f ina l S t r i n g B u f f e r message = new S t r i n g B u f f e r ( )
. append ( get Indent ( ) )
. append ( g e t I n f o ( t r e e ) ) ;

LOG. i n f o ( message ) ;

return VISIT CHILDREN ;
}

@Override
public boolean pre ( f ina l Source t r e e ) {

f ina l S t r i n g B u f f e r message = new S t r i n g B u f f e r ( )
. append ( get Indent ( ) )
. append ( t r e e . getFileName ( ) )
. append ( ’ ’ )
. append ( g e t I n f o ( t r e e ) ) ;

LOG. i n f o ( message ) ;
this . f i l ename = t r e e . getFileName ( ) ;
return VISIT CHILDREN ;

}
. . .

}

Figure 4.37: Sample of LogAction.
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pre method has the benefit of telling the action visitor it is no longer necessary to visit

descendents of the current node. Consider a case, such as the SetGlobalVariableAction,

where the maximum depth of the tree traversal is known; the number of elements processed

can be decreased, which will speed the compilation. On the other hand, the post method

is simpler because no return value is necessary. In general, when choosing between imple-

menting a method in pre or post, it is recommended to only use pre in situations where

something needs to happen before visiting children. If it is possible to implement using

post, then do so.

Along the same lines as choosing between post over pre, it is better to use the

preCatchAll and postCatchAll methods where possible. Since the ‘catch all’ methods

are applicable to all methods, there is less code to write; also, it is more uniform in appli-

cation. However, just as in the LogAction, sometimes it is necessary to do some special

processing for certain nodes.

In summary, for the semantic analysis phase, the main purpose is to check, as far as is

statically possible, that the source program makes sense. The three sub-phases ultimately

lead up to the last section of implementation, which is code generation.

4.4 Code Generation Phase

The final phase of the compiler takes the AST and writes Java code. The code generation

phase has two sub-phases, translation and output. In the first sub-phase, the AST is used

to generate strings of Java code. The translated strings are associated to the elements that

they represent. After the source AST is translated, Java source files are generated.

4.4.1 Translation

After the syntax and semantics of a source program are verified, it is finally time to translate

the source to the implementation language. The translation sub-phase walks the AST; after

visiting all children, it applies a template to each element in order to translate it. The

translated values are stored on the element so they are accessible by the elements parents.

The first iteration of the ProcessJ compiler is the simplest implementation that will work.
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1y

1. pre

2. pre
3. post

4. pre

5. pre
6. post

7. pre
8. post

9. post

10. post

Figure 4.38: AST for Assignment.

Eventually, ProcessJ will be multi-targeted, although Java is the only target supported at

present. Java was chosen as the first target, because the syntax of ProcessJ is based on the

syntax of Java. There is almost a one-to-one correlation between ProcessJ and Java.

Since ProcessJ and Java are similar languages, the translation process usually is simple.

For instance, variable references are output as their input values as well as the binary

operators like ‘+’ and ‘-’. A ProcessJ statement – such as ‘x = y + 1’ – is a good place

to start understanding how the translation phase works. A graphic representation of the

AST for the assignment statement is depicted in Figure 4.38. The figure also shows the

visitation order.

For a brief explanation of the AST, the LHS of the statement is a name; on the RHS is

a binary expression of operator plus. The binary expression has a left operand and a right

operand. The left operand is a name expression, and the right operand is a literal.

Translation happens during the post method; therefore, leaves are always translated

before their parents. Leaves are always translated first for the sake of simplicity. In this

case, the ‘x’ element is translated, first producing ‘x;’ then, the ‘y’ and ‘1’ are translated.
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binaryExpress ion ( lhs , op , rhs ) : := <<
$ lhs$ $op$ $rhs$

>>

Figure 4.39: Binary Expression String Template.

@Override
public void post ( f ina l BinaryExpr t r e e ) {

f ina l StringTemplate template = templates . ge t Ins tanceOf (
” b inaryExpress ion ” , ATTRIBUTES) ;

ATTRIBUTES. c l e a r ( ) ;
ATTRIBUTES. put ( ” l h s ” , t r e e . getLeftOperand ( ) . getOutput ( ) ) ;
ATTRIBUTES. put ( ”op” , t r e e . getText ( ) ) ;
ATTRIBUTES. put ( ” rhs ” , t r e e . getRightOperand ( ) . getOutput ( ) ) ;
t r e e . setOutput ( template . t oS t r i ng ( ) ) ;

}

Figure 4.40: Code to Translate a Binary Expression.

Since its leaves are already translated, the binary expression only needs to put them in the

right place along with its own operator. Templates are used to put the output children in

the correct order.

Templates are used to declare how the translated values are formatted. Rather than use

Java strings, or string builders, to specify the output, a template engine called StringTem-

plate [Par04] was chosen. The StringTemplate template engine promotes a strict, model-

view separation [Par09], which keeps the view and model are loosely coupled.

StringTemplate has a domain specific language for describing how to output data; a

sample can be found in Figure 4.39. In the binary expression example, a template called

‘binaryExpression’ takes three parameters: the LHS, the operator, and the RHS. The code

to use the template is depicted in Figure 4.40. The translator populates a map called

ATTRIBUTES with the required parameters and their values, and tells the template to con-

struct the string.

In terms of model and view, the AST is the model and the template is the view. By

keeping the model and view loosely coupled, multiple target languages could eventually be

supported. The only changes necessary would be to specify all the required templates in

the new target.

After building the translated values from leaves up to the root of the AST, the compiler
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is ready to save the completed Java source to disk.

4.4.2 Output

The final task of the ProcessJ compiler pipeline is to save the translated values as Java

source files. Two tasks required in the output sub-phase are to save global variables to a

module level source file and to save each top-level element to its own file.

Since ProcessJ allows multiple, top-level elements in a single file, each record, process,

and protocol is split into its own class file. The module, or original ProcessJ source file, has

no bearing on the final location of the Java source file. It is the package declaration that

determines the location of the generated source files.

Global variables are placed into a package visible class called Constants, with the Pro-

cessJ file, or module name, appended to it. For example, if the source file was MyModule.pj,

then the resulting constants file is saved as ConstantsMyModule. Although carrying the el-

ement’s visibility into the target language is not strictly necessary, the global variables are

set as default visibility static final variables.

The ProcessJ compiler pipeline is now complete. The pipeline starts at command line

processing; then, the source files are given to the syntax analysis phase. Source files are

converted from plain text input stream into a token stream by the lexer. A token stream

is converted into an AST and given to the semantic analysis phase; during this process,

the structure of the source program is verified. Semantic analysis takes the AST and

performs three sub-phases: preprocessing, analysis, and transformation. Finally, in the

code generation phase, the AST is converted into the target language and saved to files.

The next chapter will describe each design pattern used in the usual manner for design

patterns.

77



www.manaraa.com

Chapter 5

Patterns

Since their use in the book Design Patterns [GHJV95], written by the authors commonly

referred to as the ‘Gang of Four,’, patterns have become an essential way to express solutions

to common problems found during software development.

The patterns used throughout the development of the ProcessJ compiler are enumerated

in this chapter in the same pattern format used in Object Design [WBM03]. This format is

preferable to the original Gang of Four because it is more concise. This chapter will discuss

the composite, double dispatch, visitor, factory method, homogeneous AST, normalized

heterogeneous AST, irregular heterogeneous AST, and the notification patters.

In this chapter, there are six subsections in each section: problem, forces, context,

solution, consequences, and an example. The ‘problem’ subsection gives a general overview

of the problem that the pattern addresses. The ‘forces’ subsection describes the varying

concerns that are taken into consideration. The ‘context’ subsection describes when the

solution is appropriate. The ‘solution’ subsection determines how the pattern resolves the

forces, and the ‘consequences’ subsection describes the positive and negative effects that

the pattern has on the implementation. Finally, the ‘example’ subsection gives a concrete

example as to how the pattern might be used.
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5.1 Composite

5.1.1 Problem

A flexible tree structure is needed where nodes and leaves are treated uniformly [GHJV95].

5.1.2 Forces

Tree data structures contain leaf nodes and aggregate nodes. By unifying the interface of

leaf nodes and aggregate nodes, it is easier on collaborators to interact with the tree.

For instance, take the component used to build the tree. It is easier for the builder when

every component in the tree has a addChild method. All the builder needs to do is create

children then add the children to a particular node. The builder need not know what type

of node it is attaching the children.

5.1.3 Context

The following quoted is directly from the Design Patterns book [GHJV95]:

Use the Composite Pattern when

• You want to represent par-whole hierarchies of objects.

• You want clients to be able to ignore the differences between compositions of ob-

jects and individual objects. Clients will treat all objects in the composite structure

uniformly.

5.1.4 Solution

Create a common base object for both aggregates and leaf nodes, as in Figure 5.1.4, from

Design Patterns [GHJV95]. The Client is able to treat both Leaf and Composite nodes

uniformly because they both implement the same interface. The only difference between a

Leaf and a Composite is how it internally handles child-related methods.

The Leaf nodes would either have a no-operation method for the child classes or, if nec-

essary, could throw an exception if the client tried to add a child to a true Leaf. Composite
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Client Component

Leaf Composite
operation()

add(Component)
remove(Component)

children

operation()
add(Component)

remove(Component)

operation()

Figure 5.1: Composite Class Diagram.

nodes, on the other hand, implement all operations and contain a recursive structure. The

children of a Composite are Components.

5.1.5 Consequences

Consequences, as quoted directly from Design Patterns [GHJV95] for the Composite Pattern

are as follows:

• Defines class hierarchies consisting of primitive objects and composite objects. Prim-

itive objects can be composed into more complex objects, which in turn can be com-

posed, and so on recursively. Whatever client code expects a primitive object, it can

also take a composite object.

• Makes the client simple. Clients can treat composite structures and individual objects

uniformly. Clients normally do not know (and should not care) whether they are

dealing with a leaf or a composite component. This simplifies client code, because it

avoids having to write tag-and -case-statement-style functions over the classes that

define the composition.

• Makes it easier to add new kinds of components. Newly defined Composite or Leaf

sub-classes work automatically with existing structures and client code. Clients do

not have to be changed for new Component classes.
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• Can make your design overly general. The disadvantage of making it easy to add

new components is that it makes it harder to restrict the components of a composite.

Sometimes you want a composite to have only certain components. With Composite,

you cannot rely on the type system to enforce those constraints for you. You will have

to use run-time checks instead.

5.1.6 Example

The AST of ProcessJ is implemented with the Composite Pattern. The base class

ProcessJTree implements the necessary functions that act as either a Leaf or a Composite.

In that way, it acts as both the Component and the Composite.

Implementing the AST as a Composite allows a client to navigate and rewrite the tree

with ease. Since all nodes can have children that are ProcessJTrees, removing a node from

its parent and reattaching it in another node can be accomplished without knowing they

type of the node being moved, or of its new parent.

5.2 Double Dispatch

5.2.1 Problem

A function is required to behave differently based on the run-time class of an argu-

ment [Mey95, WBM03].

5.2.2 Forces

Conditional statements that rely on the run-time class of an object are difficult to maintain

because every time a new class is added, existing code needs to be modified. Modifying the

existing code breaks the open/closed principle [Mey88], which states that software entities

should be open for extension, but closed for modification.

Object-oriented systems use polymorphism to allow each implementation to define its

behavior. When there is a need for an object to act differently, polymorphism allows the

object to define its behavior.
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ConcreteA

AbstractClass

dispatch(Receiver object)

Receiver

doMethod(BaseClass obj)

doMethodA(ConcreteA obj)

doMethodB(ConcreteB obj)

ConcreteB

Client

main()

Figure 5.2: Double Dispatch Class Diagram.

5.2.3 Context

A function should act differently, depending on the run-time value of an argument.

5.2.4 Solution

The solution is to call a method on the argument that is run-time dependent. The argument

then turns around and calls a specific method on the original receiver. Let us look at a

specific example in Figures 5.2 and 5.3.

In the case of Figure 5.3, the Client calls doMethod on Receiver, passing an instance

of ConcreteA. The doMethod method is the function that needs to act differently based

on the run-time type of the AbstractClass argument. The Receiver calls the dispatch

method of the argument, which immediately calls the doMethodA method in the Receiver.

The next time, the client calls doMethod with a ConcreteB type argument. The same

thing happens, only this time, the dispatch method implementation of ConcreteB calls
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ConcreteA ConcreteB

doMethod
dispatch

doMethodA

Client Receiver

doMethod
dispatch

doMethodB

Figure 5.3: Double Dispatch Sequence Diagram.
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the doMethodB on the Receiver.

This solution appears more complicated than a switch statement or adding if state-

ments. What does this added complexity provide to the system? Consider the two solutions.

The first solution utilizes a control block, like a switch, to provide the different functionality

based on the run-time type of the argument. The second solution uses double dispatch.

Now, let us see what changes to existing code when we add another possible argument

type in each solution. In the switch solution, the original code needs to be edited in

order to add an extra case; however, changing existing functionality potentially creates

bugs and breaks the open/closed principle [Mey88]. With the second solution, the original

Receiver may not even need to be changed at all. Another possibility is that a new method,

doMethodC, can be created in Receiver; also, a new extension of Receiver and the new

type can call that method. The difference between the first solution and the second, is the

second adds functionality while the first edits existing functionality.

5.2.5 Consequences

Double dispatch creates an extension point in the Receiver removing the need for a switch

statement based on an argument. It could require the addition of a class-specific method,

but the necessity of modifying existing code is removed.

5.2.6 Example

Rock-Paper-Scissors is a simple game that can be used as an example of Double Dispatch

in Object Design [WBM03]. In Rock-Paper-Scissors, there is a GameObject, which has

three boolean methods: beatsRock, beatsPaper, and beatsScissors. A class diagram is

depicted in Figure 5.2.6.

To correspond the original solution to this example, the GameController acts as the

Client. The GameObject acts as both the Receiver and the BaseClass; the Rock, Paper,

and Scissors each act as one of the Concrete classes.

An example execution is depicted in Figure 5.2.6. The GameController creates two

GameObject objects, a Rock and a Paper. The GameController then calls the beats

method on the Rock object passing the Paper object as an argument. The beats method
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GameController

Paper

Scissors

Rock

GameObject
boolean beats(GameObject)
boolean beatsRock()
boolean beatsPaper()
boolean beatsScissors()

Figure 5.4: Rock Paper Scissors Class Diagram.

GameController RockPaper

beats(aPaper)

beatsRock()

true

false

Figure 5.5: Rock Paper Scissors Sequence Diagram.
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Figure 5.6: Rock Paper Scissors Lizard Spock.

then calls the beatsRock method on the Paper object. The Paper object returns true so

the beats method of the Rock object returns false.

To show the power of Double Dispatch, let us make Rock-Paper-Scissors more inter-

esting. The problem with Rock-Paper-Scissors is that there are not many options, so the

probability of getting a tie is one in three. To reduce the chance of a tie, we can implement

Rock-Paper-Scissors-Lizard-Spock [KB98], as depicted in Figure 5.2.6.

To implement Rock-Paper-Scissors-Lizard-Spock, each of the GameObject classes now

need an additional two methods beatsLizard and beatsSpock, plus the addition of two new

GameObject, classes Lizard and Spock. That is it! No existing code needs modification.
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The power of Double Dispatch comes from the ability to extend functionality without

modifying existing code. By adding two GameObject classes, and by adding a few methods

to existing GameObject classes, the game can be changed without modifying any of the

original beats methods.

5.3 Visitor

5.3.1 Problem

Many operations need to be performed on a relatively static set of classes that compose

an object structure. Adding new operations needs to have a minimal impact on existing

code [GHJV95].

5.3.2 Forces

Having a number of disparate operations distributed across each of the classes of an object

structure decreases the cohesion of the classes while increasing the coupling. Each time you

add a new operation, every class in the object structure needs to be edited.

It would be better to centralize the logic of each operation into a single class while

retaining the ability to perform type-specific operations on the object structure.

It also may be necessary to extend functionality, with minimal impact to the existing

code-line. In order to minimize the impact, the object structure needs to be decoupled from

the algorithms performed against that object structure.

5.3.3 Context

The Visitor is used when there is a relatively static set of classes that compose an object

structure. For example, the set of classes that compose the AST in a compiler. An abstract

syntax tree is a good example of an object structure that works well with the Visitor Pattern,

because there rarely are additions or subtractions to the set of nodes.

Sometimes it is necessary to extend functionality without modifying the object structure.

A compiler is the perfect example of this need, because there is always the need to extend
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functionality without modifying the AST. It is always possible to improve a compiler which

is the basis for the Full Employment Theorem for Compiler Writers.

The Full Employment Theorem says that a perfect size-optimizing compiler would sim-

plify an infinite loop program to the same size as the optimum program. Thus, it would

provide a method of detecting an infinite loop program, which, due to the halting prob-

lem [Tur37], is known to be undecidable. Since the best compiler is impossible, it is always

possible to write a better compiler!

5.3.4 Solution

The Visitor Pattern uses Double Dispatch (Section 5.2) to apply the correct method, de-

pending on the current node. Each Visitor performs a single duty and is able to contain

type-specific methods so that no switch is needed.

To implement the Visitor, each AST node needs to be broken into a different class.

In each class, implement an acceptVisitor(Visitor) method. Then each operation that

need to happen to the object structure becomes a new Visitor class, and each Visitor

class implements a a visit method for each node type.

5.3.5 Consequences

Below are listed the benefits and liabilities of using the Visitor Pattern, quoted directly

from Design Patterns [GHJV95]:

• Visitor makes adding new operations easy.

• A visitor gathers related operations and separates unrelated ones.

• Adding new ConcreteElement classes is hard.

• Visiting across class hierarchies.

• Accumulating state.
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Visitor

ActionVisitor ProcessJTree

visit(AltCase)
visit(AltStatement)
visit(ArrayStatement)
...

Visitable

acceptVisitor(Visitor)

Figure 5.7: Visitor Class Diagram.

5.3.6 Example

In the ProcessJ compiler, the Visitor Pattern is used to isolate operations from the

AST. There are four main classes that are involved in the Visitor Pattern in ProcessJ:

ProcessJTree, Visitor, ActionVisitor, and ProcessJCompiler.

All classes that are Visitable need to implement the acceptVisitor(Visitor) method.

The acceptVisitor method then calls the visit method on the Visitor, just as in the

Double Dispatch Pattern (Section 5.2). The Visitable interface is not strictly needed,

since a Visitor needs to implement a specific visit method for each node type. However,

it is important every node needs to implement that method.

The interface that abstracts a particular operation is the Visitor. In ProcessJ, the

Visitor is an interface because it then has the ability to utilize multiple methods for

applying an operation to an AST. For instance, ANTLR has a domain specific language

that allows manipulation of abstract syntax trees. It would be useful to allow the operation

implementer to determine if it would be easier to write an operation in ANTLR or in Java.

An ActionVisitor is a concrete implementation of Visitor, although it does not do

any operation other than apply Actions to each node in the tree. The ActionVisitor

separates tree navigation from the details of an operation. The ActionVisitor and Actions

are described in further detail in Chapter 4. Suffice to say that the ActionVisitor is an

example of a concrete implementation of a Visitor.

The ProcessJCompiler class acts as a client to the Visitor Pattern. It instantiates
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Figure 5.8: Visitor Sequence Diagram.
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Visitors and initiates a tree walk from the root Source node. It also acts as a map of the

pipeline because it applies each operation in order.

5.4 Factory Method

The Factory Method pattern is from Design Patterns [GHJV95].

5.4.1 Problem

A framework must instantiate classes, but it only knows about abstract classes, which it

cannot instantiate.

5.4.2 Forces

Frameworks use abstract classes to define and maintain relationships between objects. A

framework often is responsible for creating these objects as well.

The Factory Method pattern encapsulates the knowledge of ConcreteProduct, and

creates and moves this knowledge out of the framework.

5.4.3 Context

Use the Factory Method Pattern when:

• A class cannot anticipate the class of objects it must create.

• A class wants its sub-classes to specify the objects it creates.

• Classes delegate responsibility to one of several helper sub-classes, and localization of

the knowledge of which helper subclass is the delegate is needed.

5.4.4 Solution

The structure is depicted in Figure 5.9. A Creator has a method FactoryMethod

which is called when it needs an implementation of some abstract type Product.

The ConcreteCreator knows which implementation to use, which in this case is

ConcreteProduct.
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ConcreteProduct
ConcreteCreator

CreatorProduct
FactoryMethod()

FactoryMethod()

Figure 5.9: Structure of Factory Method.

5.4.5 Consequences

Factory methods eliminate the need to bind application-specific classes into the code. The

code only deals with the Product Interface; therefore, it can work with any user-defined

ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass the

Creator class just to create a particular ConcreteProduct object. Sub-classing is fine when

the client has to subclass the Creator class anyway, but otherwise the client now must deal

with another point of evolution.

Two additional consequences of the Factory Method pattern are:

1. It provides hooks for sub-classes. Creating objects inside a class with a factory method

is always more flexible than creating an object directly. Factory Method gives sub-

classes a hook for providing an extended version of an object.

2. It connects parallel class hierarchies. Clients can find factory methods useful, espe-

cially in the case of parallel class hierarchies. Parallel class hierarchies result when a

class delegates some of its responsibilities to a separate class.
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5.4.6 Example

ANTLR uses the TreeAdaptor interface to determine which class to create for a given token.

To relate ANTLR to the given solution, the TreeAdaptor interface is the Creator, and in

the ProcessJ compiler, the ProcessJCommonTreeAdaptor is the ConcreateCreator. The

default implementation can be overridden to define ProcessJ specific classes for the AST.

5.5 Homogeneous AST

The Homogeneous AST (HAST) pattern is taken from the book, Language Implementation

Patterns [Par09].

5.5.1 Problem

An AST needs to be represented with a simple and uniform interface with a normalized

child list.

5.5.2 Forces

Tree walking is easy if every element of the tree has a uniform interface and a normalized

child list. All the tree walker needs to do is process the token at the current element and

iterate over its children.

Having only one interface makes it easy for developers to learn. It is much easier to

figure out what to do when there is only one option.

5.5.3 Context

Use HAST when:

• The AST is simple.

• Behavior does not change across node types.

• A external tree visitor is required.

• Implementing in a non-object-oriented language like C.
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5.5.4 Solution

The solution for this pattern is simple. There is one class; the AST node. The node holds

a token, and has a normalized list of its children.

5.5.5 Consequences

HAST has the benefit of an easy-to-learn API. Developers are sure to understand a data

structure when there is only one type.

It is easy to write external tree visitors because of the uniform API. It is possible to

switch on the token type to execute different actions, and there is uniform access to child

elements.

The downside is that there is no way to encapsulate data for a particular node or have

polymorphism. In short, this is not an object-oriented approach.

5.6 Normalized Heterogeneous AST

The Normalized Heterogeneous AST (NHAST) is a pattern described in Language Imple-

mentation Patterns [Par09].

5.6.1 Problem

An AST with a simple and uniform interface and a normalized child list is needed, but more

than one data type needs to be represented.

5.6.2 Forces

HAST is good for simple applications or to implement in languages that are not object-

oriented. However, when there is a need to encapsulate data within an element, or have

nodes act polymorphic, the NHAST can be used. It is possible to have all the benefits of

a simple API and normalized child list by having all elements of the AST implement the

same interface. There is no need to limit the element data types to a single data type in an

object oriented language.
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BinaryExpr NameExpr

BaseTree

Tree
List<Tree> getChildren()

Figure 5.10: Normalized Heterogeneous AST.

5.6.3 Context

A Normalized Heterogeneous AST (NHAST) is used when:

• There is a need to store node-specific data, and

• The programmer plans to use external tree visitor.

5.6.4 Solution

Figure 5.10 depicts a NHAST. The base interface Tree is implemented by an abstract

base class, BaseTree, which is extended by specific node types, such as BinaryExpr and

NameExpr. All classes in the AST provide access to a normalized list of children.

5.6.5 Consequences

Like HAST, NHAST has the benefit of an easy-to-learn API because all nodes have a the

same interface. External tree visitors are also simple because of the uniform interface and

uniform child access. It also has the same downside, child access logic can be spread across

the entire application.
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Unlike HAST, NHAST is able to encapsulate node specific information and has the

ability to act polymorphicly.

5.7 Irregular Heterogeneous AST

The Irregular Heterogeneous AST (IHAST) pattern is from Language Implementation Pat-

terns [Par09].

5.7.1 Problem

This pattern is used when there is a need to implement an AST using more than a single

node data type and with an irregular child list representation.

5.7.2 Forces

Accessing child elements through a list breaks encapsulation. If the grammar changes the

order in which child nodes are placed into the child list, all the code used to access those

child nodes need to change. Optional children also can change order so nodes need to be

found. Code to find a child could also end up being duplicated.

Having accessor methods for each child encapsulates the child location information.

There is always a single point of access to child elements; if the storage mechanism or

location of a child changes, code is only needs to change in one place.

5.7.3 Context

Use an IHAST when:

• Readability of the AST is important.

• The project is small.

• It is worth the extra effort involved in writing external visitors.

• Encapsulation is important to the AST.
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5.7.4 Solution

The IHAST is difficult to depict because it is irregular, by definition. Every element has

its own type, and access to its children are through accessor methods. There is no uniform

method for child access.

5.7.5 Consequences

Readability and encapsulation of node-specific data are two benefits of using IHAST. Every

node can store node-specific information, and access to child elements is controlled by each

element. This pattern can be considered in terms of a domain model, in most general

applications. The domain is queried for what is needed, and all logic is stored within the

domain model.

The disadvantage to the domain model approach are the ones that the Visitor Pattern is

meant to fix. The only problem is that it is difficult to write a visitor in which the elements

do not provide a uniform interface and normalized access to child elements.

5.8 Notification

The Notification pattern is from Domain Specific Languages [FP10].

5.8.1 Problem

There is a need to collect errors and other messages to report back to the caller.

5.8.2 Forces

When validating an object model, it is beneficial to report all errors rather than stopping

validation after the first error. Reporting a collection of errors potentially allows users to

fix more in a single iteration; otherwise, they can glean more from related errors.

5.8.3 Context

Use the Notification pattern when:
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Notification

addError(String)
addError(String,Map)
addErrors(List)
getErrors() : List
getReport() : String
hasErrors() : boolean
isOk() : boolean

Figure 5.11: Notification Solution.

• There is a complicated operation that may trigger multiple errors.

• Failure at the first error is not wanted.

• Lower layers of an application need to interact with the user interface directly.

• Error collection and reporting needs to be centralized across multiple operations.

5.8.4 Solution

The Notification solution can have a separate class that contains the error reporting logic.

Figure 5.11 depicts such a class. Adding an error to the notification and getting a final

report are goals of the Notification pattern.

5.8.5 Consequences

Using a Notification centralizes error reporting code. Since errors can be reported from the

parser and lexer during syntax analysis, and any of the actions during semantic analysis, it

is good to have a single method for determining errors during the compilation process.

The Notification also allows more than one error to be reported. Since the parser

supports error recovery, the parser can figure out where it is and then report more errors

as they are found. Reporting multiple errors allows the ProcessJ developer to fix multiple

errors for each compile.
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Chapter 6

Related Work

The ProcessJ compiler is currently implemented to run on the Java Virtual Machine (JVM),

however, a few other languages that have taken a similar approach. Although the JVM

originally was developed as a run-time for Java, it has become common for other languages

to compile to byte code. For example, Scala [Ode07] is an original language that mixes the

object-oriented approach with functional programming. Another example is Erjang [Tho10],

which compiles Erlang programs into byte code so it can be run on the JVM.

There are several libraries for using a CSP-based process-oriented programming model.

Communicating Haskell Processes [Bro08], CCSP [Moo99], C++CSP [BW03], Commu-

nicating Scala Objects [Suf08], and JCSP [W+03] each allow the programmer to write

process-oriented code in Haskell, C++, Scala, and Java respectively. As mentioned previ-

ously, the major drawback to this approach is that it requires self control on the part of

the programmer. The compiler cannot catch semantic errors through the use of a library,

whereas a natively process-oriented language can do that.

Taking the library approach a step further, some have developed domain specific lan-

guages for programming CSP. A domain specific language (DSL) is a computer program-

ming language of limited expressiveness that is focused on a particular domain [FP10]. More

specifically, an internal DSL is a particular way of using a general-purpose language that

handles one small aspect of the overall system in a manner that feels like a custom lan-

guage [FP10]. For example, two libraries that provide internal DSL for CSP programming

are python-csp [MHWN09] and Groovy Parallel [KBS05], through Python and Groovy
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@process
def producer ( channel ) :

x = 0
while True :

x = x + 1
channel . wr i t e ( x )

@process
def consumer ( channel ) :

while True :
print channel . read ( )

chan = Channel ( )
Par ( consumer ( chan ) , producer ( chan ) ) . s t a r t ( )

Figure 6.1: Producer Consumer With python-csp.

respectively. Figure 6.1 illustrates a producer consumer example using python-csp.

Extending existing languages is another approach to implementing CSP. Petit-

pierre [Pet02], used an active-object approach where Java is extended to support CSP.

Classes declared as active execute in their own thread. When a method is called on an

instance of one of these active classes, the call blocks until the active object reaches an

accept statement, allowing both threads to continue. This strategy uses method calls in

order to communicate rather than by means of channels.

To take CSP implementation a step further, Go [Inc09], Honeysuckle [Eas02], and

Rain [Bro06] are all programming languages offering features from process-oriented pro-

gramming. The concurrency model of Go is based on CSP, but can be thought of as a type

safe generalization of Unix pipes [Inc09]. Go provides a construct called goroutines which

are functions that execute in their own thread of control and communicate through chan-

nels. Honeysuckle is a language that seeks to improve on occam-π by offering source-code

modularity, object encapsulation, and recursive definition of both objects and processes.

Finally, of the three programming languages mentioned, Rain is nearest to ProcessJ. Rain

is to occam-π and C++ as ProcessJ is to occam-π and Java because it implements almost

the same feature set.

CSP can be thought of as a network of processes in which each node or component can be

a sub-network or sub-component. Because of this network metaphor, it is natural to model
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them by using graphs. A Graphical Modeling Language for Specifying Concurrency based

on CSP [Hil02] defines a diagram language for CSP systems, similar to UML for object-

oriented systems. In Visual Occam [Slo10], a development environment was developed that

describes occam-π processes as component networks. Finally, SystemCSP [OB06] is a CSP-

based visual notation used for formal specification of formally verifiable, component-based

designs of distributed real-time systems.

One final alternative approach to consider is the direct use of CSP as a formal language.

There are several tools that use a machine readable CSP, such as Failures-Divergence Re-

finement (FDR) [FW09] and ProBE [LF08]. FDR is a model checker for CSP, capable

of checking for livelock and deadlock. ProBE is an animation and model checking tool.

CSP has been compiled into CTJ, JCSP, and CCSP [RRS03] as well as directly executable

code [Bar06].
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Chapter 7

Conclusion and Future Work

ProcessJ is a general purpose process-oriented programming language meant to bridge the

gap between Java and occam-π. It is built on the solid algebraic principals of the CSP

concurrency model. The compiler and language still are in the infancy stage of development,

although much of the compiler pipeline is now in place.

There is still much work to do to make ProcessJ a successful language. Three imme-

diate points of extension that will improve on the work already done to ProcessJ are: a

system library, implementation of some more CSP features, and integrated development

environment support.

Above all ProcessJ needs a system library akin to Java’s java.lang package. A general

purpose programming language is not worth much if you cannot read in data, output data,

open sockets, and interact with the world in general. This would need to be a deviation point

from Java, since we would want to design a process-oriented library with these facilities.

One feature that is currently being developed by Sean Kau, a graduate student at UNLV,

is parallel usage checking. The compiler will check that a variable can be read in parallel,

but never written in parallel.

In addition, some of the features described in Sir Anthony Hoare’s CSP are not yet

implemented in ProcessJ. Interrupts, catastrophe, restart, checkpoints, and traces seem to

be interesting language features [Hoa85]. These features are quoted directly from Commu-

nicating Sequential Processes [Hoa85].
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• Trace A trace of the behaviour of a process is a finite sequence of symbols recording

the events in which the process has engaged up to some moment in time. It would be

nice to define a trace for a process as a means for testing or verification.

• Interrupts Define a kind of sequential composition (PˆQ) which does not depend on

successful termination of P. Instead, the progress of P is just interrupted on occurrence

of the first event of Q; and P is never resumed. It follows that a trace of (PˆQ) is just

a trace of P up to an arbitrary point when the interrupt occurs, followed by a trace

of Q.

• Catastrophe Let � be a symbol standing for a catastrophic interrupt event, which it

is reasonable to suppose would not be caused by P. A process behaves like P up to a

catastrophe and thereafter like Q.

• Restart One possible response to catastrophe is to restart the original process again.

• Checkpoints Let process P be a process which describes the behavior of a long-lasting

data base system. When lightning strikes, one of the worst responses would be to

restart P in its initial state, losing all the laboriously accumulated data in the system.

I would be much better to return to some recent state of the system which is known

to be satisfactory much like transactions in modern database systems. Such a state

is known as a checkpoint.

Finally, as with all programming languages, it is nice to work in an integrated develop-

ment environment (IDE). ProcessJ could use an Eclipse plugin that provides all the features

that a Java programmer is used to. For instance, code assist, cross referencing, and code

highlighting are some of the features of IDEs. There are also plenty of possibilities for static

analysis and visual programming techniques that should work nicely with ProcessJ.
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Appendix A

The Santa Clause Problem

The Santa Clause Problem, defined by Trono [Tro94], is an exercise in concurrency that

involves several process types and limited resources. There are three process types: the

elves, the reindeer, and Santa.

There are ten elves which make toys. Occasionally, the elves find they need to consult

with Santa. Santa cannot be bothered to meet with one elf at a time so they need to queue

in groups of three. After three elves are ready, Santa will greet each of them, consult with

them, and finally say goodbye to each elf.

There are nine reindeer which spend their time on holiday except Christmas. On Christ-

mas, all nine come back to the north pole, and the last one back tells Santa they are ready

to be harnessed. Santa harnesses each of the reindeer and goes off to deliver presents. When

Santa gets back, he unharnesses each of the reindeer, and goes back to his house while the

reindeer go back on vacation.

Finally, if the reindeer and elves are ready for Santa at the same time, Santa chooses to

work with the reindeer.
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package edu . unlv . c s . santa ;

const int N REINDEER = 9 ;

const int G REINDEER = N REINDEER;

const int N ELVES = 10 ;

const int G ELVES = 3 ;

const int HOLIDAY TIME = 100000;

const int WORKING TIME = 200000;

const int DELIVERY TIME = 100000;

const int CONSULTATION TIME = 200000;

protocol ReindeerMessage {

ho l iday : { int id ; }

deerReady : { int id ; }

d e l i v e r : { int id ; }

deerDone : { int id ; }

}

protocol ElfMessage {

working : { int id ; }

e l fReady : { int id ; }

consu l t : { int id ; }

e l fDone : { int id ; }

}

protocol SantaMessage {

re indeerReady : { }

harness : { int id ; }

mushMush : { }

woah : { }

unharness : { int id ; }

elvesReady : { }

105



www.manaraa.com

g r e e t : { int id ; }

c o n s u l t i n g : { }

santaDone : { }

goodbye : { int id ; }

}

protocol Message extends ReindeerMessage , ElfMessage , SantaMessage ;

nat ive proc void p r i n t l n ( S t r ing msg) ;

proc void d i s p l a y (chan<Message>. read in ) {

while ( t rue ) {

Message msg = in . read ( ) ;

switch (msg . tag ) {

case ho l iday :

p r i n t l n (” Reindeer ”+msg . id+” i s on ho l iday . ” ) ;

break ;

case deerReady :

p r i n t l n (” Reindeer ”+msg . id+” i s on ready . ” ) ;

break ;

case d e l i v e r :

p r i n t l n (” Reindeer ”+msg . id+” i s d e l i v e r i n g . ” ) ;

break ;

case deerDone :

p r i n t l n (” Reindeer ”+msg . id+” i s done . ” ) ;

break ;

case working :

p r i n t l n (” E l f ”+msg . id+” i s working . ” ) ;

break ;

case e l fReady :

p r i n t l n (” E l f ”+msg . id+” i s ready . ” ) ;

break ;

case consu l t :

p r i n t l n (” E l f ”+msg . id+” i s c o n s u l t i n g with Santa . ” ) ;
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break ;

case e l fDone :

p r i n t l n (” E l f ”+msg . id+” i s done . ” ) ;

break ;

case re indeerReady :

p r i n t l n (” Santa and the r e i n d e e r are ready . ” ) ;

break ;

case harness :

p r i n t l n (” Santa i s harne s s ing ”+msg . id ) ;

break ;

case mushMush :

p r i n t l n (”Mush ! Mush ! ” ) ;

break ;

case woah :

p r i n t l n (”Woah! ” ) ;

break ;

case unharness :

p r i n t l n (” Santa i s unharness ing ”+msg . id ) ;

break ;

case elvesReady :

p r i n t l n (” Santa , the e l v e s are ready ! ” ) ;

break ;

case g r e e t :

p r i n t l n (” Santa g r e e t s e l f ”+msg . id ) ;

break ;

case c o n s u l t i n g :

p r i n t l n (” Santa i s c o n s u l t i n g with e l v e s . ” ) ;

break ;

case santaDone :

p r i n t l n (” Santa i s done . ” ) ;

break ;

case goodbye :

p r i n t l n (” Santa says goodbye to ”+msg . id ) ;

break ;
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}

}

}

proc void par t i a lBar r i e rKnock ( const int n ,

chan<boolean >. read a ,

chan<boolean >. read b ,

chan<boolean >. wr i t e knock ) {

while ( t rue ) {

f o r ( int i =0; i<n ; i++) {

boolean any ;

any = a . read ( ) ;

}

knock . wr i t e ( t rue ) ;

f o r ( int i =0; i<n ; i++) {

boolean any ;

any = b . read ( ) ;

}

}

}

proc void p a r t i a l B a r r i e r ( const int n ,

chan<boolean >. read a ,

chan<boolean >. read b) {

while ( t rue ) {

f o r ( int i =0; i<n ; i++) {

boolean any ;

any = a . read ( ) ;

}

f o r ( int i =0; i<n ; i++) {

boolean any ;

any = b . read ( ) ;

}

}
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}

proc void synchron ize ( shared chan<boolean >. wr i t e a ,

shared chan<boolean >. wr i t e b) {

c la im ( a ) {

a . wr i t e ( t rue ) ;

}

c la im (b) {

b . wr i t e ( t rue ) ;

}

}

proc void r e i n d e e r ( const int id ,

const int seed ,

b a r r i e r jus tRe indeer ,

b a r r i e r santaReindeer ,

shared chan<int>. wr i t e toSanta ,

shared chan<ReindeerMessage>. wr i t e r epo r t ) {

int mySeed = seed ;

t imer tim ;

long t , wait ;

f o r ( int i =0; i <1000; i++) {

sk ip ; // the r e i n d e e r takes a breather

}

while ( t rue ) {

c la im ( r epor t ) {

r epor t . wr i t e (new ReindeerMessage . ho l iday ( id ) ) ;

}

// wait , mySeed := random ( . . . )

t = tim . read ( ) ; // d i e s in the checker f o r some st range reason

tim . timeout ( t + wait ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new ReindeerMessage . deerReady ( id ) ) ;

}
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sync ( ju s tRe indee r ) ;

c la im ( toSanta ) {

toSanta . wr i t e ( id ) ;

}

sync ( santaReindeer ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new ReindeerMessage . d e l i v e r ( id ) ) ;

}

sync ( santaReindeer ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new ReindeerMessage . deerDone ( id ) ) ;

}

c la im ( toSanta ) {

toSanta . wr i t e ( id ) ;

}

}

}

proc void e l f ( const int id ,

const int seed ,

shared chan<boolean >. wr i t e elvesA ,

shared chan<boolean >. wr i t e elvesB ,

shared chan<boolean >. wr i t e santaElvesA ,

shared chan<boolean >. wr i t e santaElvesB ,

shared chan<int>. wr i t e toSanta ,

shared chan<ElfMessage >. wr i t e r epo r t ) {

int mySeed = seed ;

t imer tim ;

long t , wait ;

f o r ( int i =0; i <1000; i++)

sk ip ; // wait , mySeed := random ( workingTime , mySeed ) ;

while ( t rue ) {

c la im ( r epor t ) {

r epor t . wr i t e (new ElfMessage . working ( id ) ) ;
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}

// wait , mySeed := random ( workingTime , mySeed ) ;

t = tim . read ( ) ;

tim . timeout ( t + wait ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new ElfMessage . e l fReady ( id ) ) ;

}

synchron ize ( elvesA , e lvesB ) ;

c la im ( toSanta ) {

toSanta . wr i t e ( id ) ;

}

synchron ize ( santaElvesA , santaElvesB ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new ElfMessage . con su l t ( id ) ) ;

}

synchron ize ( santaElvesA , santaElvesB ) ;

c la im ( ( r epor t ) {

r epor t . wr i t e (new SantaMessage . mushMush ( ) ) ;

}

sync ( santaReindeer ) ;

t = tim . read ( ) ;

tim . timeout ( t + wait ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . woah ( ) ) ;

}

sync ( santaReindeer ) ;

f o r ( int i =0; i< G REINDEER; i++) {

id = fromReindeer . read ({

c la im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . unharness ( id ) ) ;

}

}) ;

}

}
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any = knock . read ( ) : { // 3 Elves ready

cla im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . e lvesReady ( ) ) ;

}

f o r ( int i =0; i<G ELVES; i++) {

id = fromElf . read ( ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . g r e e t ( id ) ) ;

}

}

c la im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . c o n s u l t i n g ( ) ) ;

}

synchron ize ( santaElvesA , santaElvesB ) ;

t = tim . read ( ) ;

tim . timeout ( t + wait ) ;

c la im ( r epor t ) {

r epor t . wr i t e (new SantaMessage . santaDone ( ) ) ;

}

synchron ize ( santaElvesA , santaElvesB ) ;

f o r ( int i =0; i<G ELVES; i++) {

id = fromElf . read ({

c la im ( r epor t ) {

r epor t . wr i t e ( new SantaMessage . goodbye ( id ) ) ;

}

}) ;

}

}

}

}

}

proc void main ( ) {

t imer tim ;
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long seed ;

seed = tim . read ( ) ;

seed = ( seed >> 2) + 42 ;

b a r r i e r jus tRe indeer , santaReindeer ;

shared wr i t e chan<boolean> elvesA , e lvesB ;

chan<boolean> knock ;

shared wr i t e chan<boolean> santaElvesA , santaElvesB ;

shared wr i t e chan<int> re indeerSanta , e l f S a n t a ;

shared wr i t e chan<Message> r epor t ;

par {

par e n r o l l ( santaReindeer ) {

santa ( seed + (N REINDEER + N ELVES) , knock . read ,

r e indee rSanta . read , e l f S a n t a . read , santaReindeer ,

santaElvesA . write , santaElvesB . write , r epo r t . wr i t e ) ;

par f o r ( int i =0; i<N REINDEER; i++) {

par e n r o l l ( justReindder , santaReindeer ) {

r e i n d e e r ( i , seed + i , jus tRe indeer , santaReindeer ,

r e indee rSanta . write , r epor t . wr i t e ) ;

}

}

}

par f o r ( int i =0; i<N ELVES ; i++){

e l f ( i , N REINDEER + ( seed + i ) ,

e lvesA . write , e lvesB . write ,

santaElvesA . write , santaElvesB . write ,

e l f S a n t a . write , r epo r t . wr i t e ) ;

}

d i s p l a y ( r epor t . read ) ;

par t i a lBar r i e rKnock (G ELVES, e lvesA . read , e lvesB . read , knock . wr i t e ) ;

p a r t i a l B a r r i e r (G ELVES + 1 , santaElvesA . read , santaElvesB . read ) ;

}

}
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